11,382 research outputs found
Utilizing micro-computed tomography to evaluate bone structure surrounding dental implants: a comparison with histomorphometry
Although histology has proven to be a reliable method to evaluate the ossoeintegration of a dental implant, it is costly, time consuming, destructive, and limited to one or few sections. Microcomputed tomography (µCT) is fast and delivers three-dimensional information, but this technique has not been widely used and validated for histomorphometric parameters yet. This study compared µCT and histomorphometry by means of evaluating their accuracy in determining the bone response to two different implant materials. In total, 32 titanium (Ti) and 16 hydroxyapatite (HA) implants were installed in 16 lop-eared rabbits. After 2 and 4 weeks, the animals were scarified, and the samples retrieved. After embedding, the samples were scanned with µCT and analyzed three-dimensionally for bone area (BA) and bone-implant contact (BIC). Thereafter, all samples were sectioned and stained for histomorphometry. For the Ti implants, the mean BIC was 25.25 and 28.86% after 2 and 4 weeks, respectively, when measured by histomorphometry, while it was 24.11 and 24.53% when measured with µCT. BA was 35.4 and 31.97% after 2 and 4 weeks for histomorphometry and 29.06 and 27.65% for µCT. For the HA implants, the mean BIC was 28.49 and 42.51% after 2 and 4 weeks, respectively, when measured by histomorphometry, while it was 33.74 and 42.19% when measured with µCT. BA was 30.59 and 47.17% after 2 and 4 weeks for histomorphometry and 37.16 and 44.95% for µCT. Direct comparison showed that only the 2 weeks BA for the titanium implants was significantly different between µCT and histology (p = 0.008). Although the technique has its limitations, µCT corresponded well with histomorphometry and should be considered as a tool to evaluate bone structure around implants
Age estimation from clavicle by histomorphometry method: a review
Histomorphometry method, the quantitative study of histology, is a useful method to estimate age of death in the present and ancient skeletal remains by measurable morphology of osteon. This method, which reduces individual bias and difference in the level of experience for estimation of age, is useful for constructing paleodemographic models and forensic identifications when adult fragmentary skeletal remains are encountered. Most parts of skeletons that are studied by histomorphometry method are femur, tibia, rib, and clavicle. Clavicle bone has been poorly studied except for Caucasian populations. Moreover, clavicle is a very interesting bone because it is a non-weight bearing bone, is usually found as entire bone and has different bone development from other long bones. Thus, the interest of this review article is on the age estimation by histomorphometry method of clavicle. This review article also describes the histomorphometry method, clavicle bone, bone remodeling, and forensic application of clavicle with histomorphometry method
Short-term Osteoclastic Activity Induced by Locally High Concentrations of Recombinant Human Bone Morphogenetic Protein–2 in a Cancellous Bone Environment
Study Design. An experimental study investigating osteoclastic activity induced by rhBMP-2 in sheep.
Objective. To examine the effects of increasing local rhBMP-2 concentration on osteoclastic response and peri-implant bone resorption.
Summary of Background Data. Level I clinical studies have established the safe and effective volume and concentration of rhBMP-2 delivered on an absorbable collagen sponge. However, peri-implant bone resorption appearing as decreased mineral density has been observed radiographically in rare instances after implantation of rhBMP-2 on an absorbable collagen sponge (rhBMP-2/ACS).
Methods. Bilateral corticocancellous defects were created in the distal femora of 30 adult sheep. Combinations of rhBMP-2/ACS implant volume (V) (1V = normal fill or 2V = overfilled) and rhBMP-2 solution concentration (⤫) (1 ⤫ normal concentration or 3.5 ⤫ = hyperconcentrated) resulted in local rhBMP-2 concentrations of 0⤫, 1⤫, 2⤫, 3.5⤫, and 7⤫ the estimated effective concentration for this model. Faxitron radiography, quantitative CT, histology, and quantitative
histomorphometry were conducted in a blinded fashion to analyze the effect of the treatments.
Results. At 1 week, the normal fill-normal concentration implants (1⤫) produced the least transient osteoclastic activity resulting in limited peri-implant resorption. Overfilledhyperconcentrated implants (2⤫, 3.5⤫) demonstrated moderate resorption zones. Overfilled-hyperconcentrated implants (7⤫) demonstrated extensive osteoclastic activity and marked resorption. Results at 4 and 8 weeks revealed dense osteoid and bone in the voids with progressive bony healing. Control defects showed no osteoclastic activity with little to no bony healing.
Conclusion. Increasing the local rhBMP-2 concentration by overfilling the defect with rhBMP-2/ACS or hyper-concentrating the rhBMP-2 solution on the absorbable collagen sponge led to a concentration-dependent osteoclastic resorption of peri-implant bone. The osteoclastic effect was transient, and progressive healing took place over the 8-week survival period
Tiludronate and clodronate do not affect bone structure or remodeling kinetics over a 60 day randomized trial
Background
Tiludronate and clodronate are FDA-approved bisphosphonate drug therapies for navicular disease in horses. Although clinical studies have determined their ability to reduce lameness associated with skeletal disorders in horses, data regarding the effect on bone structure and remodeling is lacking. Additionally, due to off-label use of these drugs in young performance horses, effects on bone in young horses need to be investigated. Therefore, the purpose of this randomized, experimental pilot study was to determine the effect of tiludronate and clodronate on normal bone cells, structure and remodeling after 60 days in clinically normal, young horses. Additionally, the effect of clodronate on bone healing 60 days after an induced defect was investigated.
Results
All horses tolerated surgery well, with no post-surgery lameness and all acquired biopsies being adequate for analyses. Overall, tiludronate and clodronate did not significantly alter any bone structure or remodeling parameters, as evaluated by microCT and dynamic histomorphometry. Tiludronate did not extensively impact bone formation or resorption parameters as evaluated by static histomorphometry. Similarly, clodronate did not affect bone formation or resorption after 60 days. Sixty days post-defect, healing was minimally affected by clodronate.
Conclusions
Tiludronate and clodronate do not appear to significantly impact bone tissue on a structural or cellular level using standard dose and administration schedules
Analysis of Nkx3.1:Cre-driven Erk5 deletion reveals a profound spinal deformity which is linked to increased osteoclast activity
Extracellular signal-regulated protein kinase 5 (ERK5) has been implicated during development and carcinogenesis. Nkx3.1-mediated Cre expression is a useful strategy to genetically manipulate the mouse prostate. While grossly normal at birth, we observed an unexpected phenotype of spinal protrusion in Nkx3.1:Cre;Erk5fl/fl (Erk5fl/fl) mice by ~6–8 weeks of age. X-ray, histological and micro CT (µCT) analyses showed that 100% of male and female Erk5fl/fl mice had a severely deformed curved thoracic spine, with an associated loss of trabecular bone volume. Although sex-specific differences were observed, histomorphometry measurements revealed that both bone resorption and bone formation parameters were increased in male Erk5fl/fl mice compared to wild type (WT) littermates. Osteopenia occurs where the rate of bone resorption exceeds that of bone formation, so we investigated the role of the osteoclast compartment. We found that treatment of RANKL-stimulated primary bone marrow-derived macrophage (BMDM) cultures with small molecule ERK5 pathway inhibitors increased osteoclast numbers. Furthermore, osteoclast numbers and expression of osteoclast marker genes were increased in parallel with reduced Erk5 expression in cultures generated from Erk5fl/fl mice compared to WT mice. Collectively, these results reveal a novel role for Erk5 during bone maturation and homeostasis in vivo
Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength
Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites
Micro-CT Characterization of Human Trabecular Bone in Osteogenesis Imperfecta
Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment
Exenatide Improves Bone Quality in a Murine Model of Genetically Inherited Type 2 Diabetes Mellitus
Type 2 diabetes mellitus (T2DM) is associated with skeletal complications, including an
increased risk of fractures. Reduced blood supply and bone strength may contribute to
this skeletal fragility. We hypothesized that long-term administration of Exenatide, a glucagon-
like peptide-1 receptor agonist, would improve bone architecture and strength of
T2DM mice by increasing blood flow to bone, thereby stimulating bone formation. In this study, we used a model of obesity and severe T2DM, the leptin receptor-deficient db/db mouse to assess alterations in bone quality and hindlimb blood flow and to examine the beneficial effects of 4 weeks administration of Exenatide. As expected, diabetic mice showed marked alterations in bone structure, remodeling and strength, and basal vascular tone compared with lean mice. Exenatide treatment improved trabecular bone mass and architecture by increasing bone formation rate, but only in diabetic mice. Although there was no effect on hindlimb perfusion at the end of this treatment, exenatide administration acutely increased tibial blood flow. While Exenatide treatment did not restore the
impaired bone strength, intrinsic properties of the matrix, such as collagen maturity, were improved. The effects of Exenatide on in vitro bone formation were further investigated in primary osteoblasts cultured under high-glucose conditions, showing that Exenatide
reversed the impairment in bone formation induced by glucose. In conclusion, Exenatide improves trabecular bone mass by increasing bone formation and could protect against the development of skeletal complications associated with T2DM
Comparison of osseointegration in piezoimplants versus cylindrical implants
BACKGROUND: Dental implants have been successful for the restoration of edentulous areas, but current techniques are inadequate in areas lacking sufficient bone volume. Piezoelectric surgery has shown encouraging effects on both osseous healing. A new wedge-shaped titanium PiezoImplant requires piezoelectric osteotomy. This study compares PiezoImplants to conventional threaded cylindrical shaped implants by microcomputed tomography and histology to assess osseointegration, tissue response, and alveolar ridge changes.
METHODS: After 3 months post-extraction, 18 conventional cylindrical implants and 18 wedge-shaped PiezoImplants were placed using a split-mouth design in 3 adult mini pigs. The cylindrical implant sites were prepared for osteotomy with rotary instrumentation while the PiezoImplant sites were prepared with piezoelectric surgical inserts. One animal was sacrificed at 4, 8, and 12 weeks post operation. Quantitative µCT and histological analysis evaluated bone volume, osseointegration, and post-operative cellular events.
RESULTS: The results of a multivariable linear regression model demonstrated that the PiezoImplants, arch location, and time were significant factors on higher BV/TV percentage. Bone to implant contact (BIC) analysis by high resolution microscopy and histomorphometry indicated osseointegration though intimate contact between implants and adjacent alveolar bone in both groups. The tissue response displayed no evidence of abnormal healing and the PiezoImplant was classified as a non-irritant.
CONCLUSION: The combination of piezoelectric osteotomy and newly designed PiezoImplants had favorable effects on wound healing and osseointegration compared to conventional cylindrical implants. These novel wedge-shaped implants may be beneficial for narrow ridge spaces without additional ridge augmentation. Further research is needed to establish clinical validity
- …
