1,004,959 research outputs found
Mathematical modelling of the pathogenesis of multiple myeloma-induced bone disease
Multiple myeloma (MM) is the second most common haematological malignancy and results in destructive bone lesions. The interaction between MM cells and the bone microenvironment plays an important role in the development of the tumour cells and MM-induced bone disease and forms a 'vicious cycle' of tumour development and bone destruction, intensified by suppression of osteoblast activity and promotion of osteoclast activity. In this paper, a mathematical model is proposed to simulate how the interaction between MM cells and the bone microenvironment facilitates the development of the tumour cells and the resultant bone destruction. It includes both the roles of inhibited osteoblast activity and stimulated osteoclast activity. The model is able to mimic the temporal variation of bone cell concentrations and resultant bone volume after the invasion and then removal of the tumour cells and explains why MM-induced bone lesions rarely heal even after the complete removal of MM cells. The behaviour of the model compares well with published experimental data. The model serves as a first step to understand the development of MM-induced bone disease and could be applied further to evaluate the current therapies against MM-induced bone disease and even suggests new potential therapeutic targets
Recommended from our members
Compositions comprising citrate and applications thereof
In one aspect, methods of promoting bone growth are described herein. In some embodiments, a method of promoting bone growth described herein comprises promoting cell differentiation or phenotype progression in a population of bone cells by providing a citrate-presenting composition to the population of bone cells. In some embodiments, the citrate-presenting composition is provided to the bone cells at a first stage of cell development selected to obtain a first cell differentiation or phenotype progression. Additionally, in some cases, a second citrate-presenting composition is further provided to the bone cells at a second stage of cell development selected to obtain a second cell differentiation or phenotype progression.Board of Regents, University of Texas Syste
Development of Bone Targeting Drugs.
The skeletal system, comprising bones, ligaments, cartilage and their connective tissues, is critical for the structure and support of the body. Diseases that affect the skeletal system can be difficult to treat, mainly because of the avascular cartilage region. Targeting drugs to the site of action can not only increase efficacy but also reduce toxicity. Bone-targeting drugs are designed with either of two general targeting moieties, aimed at the entire skeletal system or a specific cell type. Most bone-targeting drugs utilize an affinity to hydroxyapatite, a major component of the bone matrix that includes a high concentration of positively-charged Ca(2+). The strategies for designing such targeting moieties can involve synthetic and/or biological components including negatively-charged amino acid peptides or bisphosphonates. Efficient delivery of bone-specific drugs provides significant impact in the treatment of skeletal related disorders including infectious diseases (osteoarthritis, osteomyelitis, etc.), osteoporosis, and metabolic skeletal dysplasia. Despite recent advances, however, both delivering the drug to its target without losing activity and avoiding adverse local effects remain a challenge. In this review, we investigate the current development of bone-targeting moieties, their efficacy and limitations, and discuss future directions for the development of these specific targeted treatments
Development of an injectable composite for bone regeneration
With the development of minimally invasive surgical techniques, there is a growing interest in the research and development of injectable biomaterials especially for orthopedic applications. In a view to enhance the overall surgery benefits for the patient, the BIOSINJECT project aims at preparing a new generation of mineral-organic composites for bone regeneration exhibiting bioactivity, therapeutic activity and easiness of use to broaden the application domains of the actual bone mineral cements and propose an alternative strategy with regard to their poor resorbability, injectability difficulties and risk of infection. First, a physical-chemical study demonstrated the feasibility of self-setting injectable composites associating calcium carbonate-calcium phosphate cement and polysaccharides (tailor-made or commercial polymer) in the presence or not of an antibacterial agent within the composite formulation. Then, bone cell response and antimicrobial activity of the composite have been evaluated in vitro. Finally, in order to evaluate resorption rate and bone tissue response an animal study has been performed and the histological analysis is still in progress. These multidisciplinary and complementary studies led to promising results in a view of the industrial development of such composite for dental and orthopaedic applications
Exenatide Improves Bone Quality in a Murine Model of Genetically Inherited Type 2 Diabetes Mellitus
Type 2 diabetes mellitus (T2DM) is associated with skeletal complications, including an
increased risk of fractures. Reduced blood supply and bone strength may contribute to
this skeletal fragility. We hypothesized that long-term administration of Exenatide, a glucagon-
like peptide-1 receptor agonist, would improve bone architecture and strength of
T2DM mice by increasing blood flow to bone, thereby stimulating bone formation. In this study, we used a model of obesity and severe T2DM, the leptin receptor-deficient db/db mouse to assess alterations in bone quality and hindlimb blood flow and to examine the beneficial effects of 4 weeks administration of Exenatide. As expected, diabetic mice showed marked alterations in bone structure, remodeling and strength, and basal vascular tone compared with lean mice. Exenatide treatment improved trabecular bone mass and architecture by increasing bone formation rate, but only in diabetic mice. Although there was no effect on hindlimb perfusion at the end of this treatment, exenatide administration acutely increased tibial blood flow. While Exenatide treatment did not restore the
impaired bone strength, intrinsic properties of the matrix, such as collagen maturity, were improved. The effects of Exenatide on in vitro bone formation were further investigated in primary osteoblasts cultured under high-glucose conditions, showing that Exenatide
reversed the impairment in bone formation induced by glucose. In conclusion, Exenatide improves trabecular bone mass by increasing bone formation and could protect against the development of skeletal complications associated with T2DM
Iron-enriched diet contributes to early onset of osteoporotic phenotype in a mouse model of hereditary hemochromatosis
Osteoporosis is associated with chronic iron overload secondary to hereditary hemochromatosis (HH), but the causative mechanisms are incompletely understood. The main objective of this study was to investigate the role of dietary iron on osteoporosis, using as biological model the Hfe-KO mice, which have a systemic iron overload. We showed that these mice show an increased susceptibility for developing a bone loss phenotype compared to WT mice, which can be exacerbated by an iron rich diet. The dietary iron overload caused an increase in inflammation and iron incorporation within the trabecular bone in both WT and Hfe-KO mice. However, the osteoporotic phenotype was only evident in Hfe-KO mice fed the iron-enriched diet. This appeared to result from an imbalance between bone formation and bone resorption driven by iron toxicity associated to Hfe-KO and confirmed by a decrease in bone microarchitecture parameters (identified by micro-CT) and osteoblast number. These findings were supported by the observed downregulation of bone metabolism markers and upregulation of ferritin heavy polypeptide 1 (Fth1) and transferrin receptor-1 (Tfrc), which are associated with iron toxicity and bone loss phenotype. In WT mice the iron rich diet was not enough to promote a bone loss phenotype, essentially due to the concomitant depression of bone resorption observed in those animals. In conclusion the dietary challenge influences the development of osteoporosis in the HH mice model thus suggesting that the iron content in the diet may influence the osteoporotic phenotype in systemic iron overload conditions.National Funds through Foundation for Science and Technology (FCT) Norte-01-0145-FEDER-000012
Portuguese Foundation for Science and Technology (FCT) SFRH/BD/77056/2011
European Regional Development Fund (FEDER) Norte-01-0145-FEDER-000012info:eu-repo/semantics/publishedVersio
Extrapancreatic actions of incretin-based therapies on bone in diabetes mellitus
Diabetes mellitus is correlated with modifications in bone microarchitectural and
mechanical strength, leading to increased bone fragility. The incretin hormones, with
a classical effect to increase insulin secretion following food ingestion, are now
postulated to have important direct effects on bone. As such, glucose-dependent
insulinotropic polypeptide (GIP) has dual actions on bone cells; enhancing bone�forming activity of osteoblasts and suppressing bone resorption by osteoclasts. The
sister incretin of GIP, glucagon-like peptide-1 (GLP-1), is also suspected to directly
influence bone health in a beneficial manner, although mechanism are less clear at
present. The physiological actions of incretins are attenuated by dipeptidyl peptidase
(DPP-4) activity and it is speculated that introduction of DPP-4 inhibitor may also
positively affect quality of the skeleton. As such, this thesis evaluates the potential
beneficial effects of a DPP-4 resistant GIP analogue, namely [D-Ala2
]GIP, on
osteoblastic-derived, SaOS-2 cells, and also preliminary in vivo studies on the impact
of genetic deficiencies of GIPRs and GLP-1Rs on bone mineral density and content.
Further studies characterised the beneficial effects of incretin-based therapies on
metabolic control, bone microstructure and bone mechanical integrity in animal
models of pharmacologically-, genetically- and environmentally-induced diabetes.
GIP and related stable analogue increased bone-forming biomarkers in SaOS-2 cells
and importantly, [D-Ala2
]GIP was shown to be more potent than native GIP.
Knockout mouse studies revealed that both GIPR and GLP-1R signaling are
important for optimum bone mass. All diabetic mouse models displayed reduced
bone mass, altered bone micromorphology and impairment of bone mechanical
strength, similar to the human situation, confirming their appropriateness. The
incretin-based therapeutics, [D-Ala2
]GIP and Liraglutide, in streptozotocin-diabetic
significantly increased bone matrix properties, indicating recovery of bone strength
at the tissue level. The beneficial effects of administration of [D-Ala2
]GIP�oxyntomodulin on bone health in db/db mice were more prominent as the Oxm
analogue did not only improve bone strength at tissue level, but also at whole-bone
level. These modifications were independent of metabolic status. Twice-daily
Exendin-4 therapy improved glycaemic control and increased work required to resist
bone fracture in high-fat fed mice. It was also established that Sitagliptin had neutral
effects on bone microstructure and mechanical strength in high-fat mice. In summary, these data demonstrate the negative impact of diabetes mellitus on normal
skeleton development and bone quality. Moreover, this thesis highlights the growing
potential of incretin-based therapies for ameliorating bone defects and improving the
increased fragility fracture risk associated with diabete
Bone in vivo: Surface mapping technique
Bone surface mapping technique is proposed on the bases of two kinds of
uniqueness of bone in vivo, (i) magnitude of the principal moments of inertia,
(ii) the direction cosines of principal axes of inertia relative to inertia
reference frame. We choose the principal axes of inertia as the bone coordinate
system axes. The geographical marks such as the prime meridian of the bone in
vivo are defined and methods such as tomographic reconstruction and boundary
development are employed so that the surface of bone in vivo can be mapped.
Experimental results show that the surface mapping technique can both reflect
the shape and help study the surface changes of bone in vivo. The prospect of
such research into the surface shape and changing laws of organ, tissue or cell
will be promising.Comment: 9 pages, 6 figure
Development of a bone-fixation prosthetic attachment
An artificial limb attached directly to the bone by a quick-disconnect coupling was tested in-place at a California medical rehabilitation center. Its design concept and development, made possible by multiple spinoffs of aerospace technology, are discussed
- …
