188 research outputs found

    Bold Diagrammatic Monte Carlo in the Lens of Stochastic Iterative Methods

    Full text link
    This work aims at understanding of bold diagrammatic Monte Carlo (BDMC) methods for stochastic summation of Feynman diagrams from the angle of stochastic iterative methods. The convergence enhancement trick of the BDMC is investigated from the analysis of condition number and convergence of the stochastic iterative methods. Numerical experiments are carried out for model systems to compare the BDMC with related stochastic iterative approaches

    Feynman Diagrams as Computational Graphs

    Full text link
    We propose a computational graph representation of high-order Feynman diagrams in Quantum Field Theory (QFT), applicable to any combination of spatial, temporal, momentum, and frequency domains. Utilizing the Dyson-Schwinger and parquet equations, our approach effectively organizes these diagrams into a fractal structure of tensor operations, significantly reducing computational redundancy. This approach not only streamlines the evaluation of complex diagrams but also facilitates an efficient implementation of the field-theoretic renormalization scheme, crucial for enhancing perturbative QFT calculations. Key to this advancement is the integration of Taylor-mode automatic differentiation, a key technique employed in machine learning packages to compute higher-order derivatives efficiently on computational graphs. To operationalize these concepts, we develop a Feynman diagram compiler that optimizes diagrams for various computational platforms, utilizing machine learning frameworks. Demonstrating this methodology's effectiveness, we apply it to the three-dimensional uniform electron gas problem, achieving unprecedented accuracy in calculating the quasiparticle effective mass at metal density. Our work demonstrates the synergy between QFT and machine learning, establishing a new avenue for applying AI techniques to complex quantum many-body problems

    Analysis of chemotherapy screening assays using MCMC methods

    Get PDF

    Field theoretic formulation and empirical tracking of spatial processes

    Get PDF
    Spatial processes are attacked on two fronts. On the one hand, tools from theoretical and statistical physics can be used to understand behaviour in complex, spatially-extended multi-body systems. On the other hand, computer vision and statistical analysis can be used to study 4D microscopy data to observe and understand real spatial processes in vivo. On the rst of these fronts, analytical models are developed for abstract processes, which can be simulated on graphs and lattices before considering real-world applications in elds such as biology, epidemiology or ecology. In the eld theoretic formulation of spatial processes, techniques originating in quantum eld theory such as canonical quantisation and the renormalization group are applied to reaction-di usion processes by analogy. These techniques are combined in the study of critical phenomena or critical dynamics. At this level, one is often interested in the scaling behaviour; how the correlation functions scale for di erent dimensions in geometric space. This can lead to a better understanding of how macroscopic patterns relate to microscopic interactions. In this vein, the trace of a branching random walk on various graphs is studied. In the thesis, a distinctly abstract approach is emphasised in order to support an algorithmic approach to parts of the formalism. A model of self-organised criticality, the Abelian sandpile model, is also considered. By exploiting a bijection between recurrent con gurations and spanning trees, an e cient Monte Carlo algorithm is developed to simulate sandpile processes on large lattices. On the second front, two case studies are considered; migratory patterns of leukaemia cells and mitotic events in Arabidopsis roots. In the rst case, tools from statistical physics are used to study the spatial dynamics of di erent leukaemia cell lineages before and after a treatment. One key result is that we can discriminate between migratory patterns in response to treatment, classifying cell motility in terms of sup/super/di usive regimes. For the second case study, a novel algorithm is developed to processes a 4D light-sheet microscopy dataset. The combination of transient uorescent markers and a poorly localised specimen in the eld of view leads to a challenging tracking problem. A fuzzy registration-tracking algorithm is developed to track mitotic events so as to understand their spatiotemporal dynamics under normal conditions and after tissue damage.Open Acces

    Differentiable Visual Computing for Inverse Problems and Machine Learning

    Full text link
    Originally designed for applications in computer graphics, visual computing (VC) methods synthesize information about physical and virtual worlds, using prescribed algorithms optimized for spatial computing. VC is used to analyze geometry, physically simulate solids, fluids, and other media, and render the world via optical techniques. These fine-tuned computations that operate explicitly on a given input solve so-called forward problems, VC excels at. By contrast, deep learning (DL) allows for the construction of general algorithmic models, side stepping the need for a purely first principles-based approach to problem solving. DL is powered by highly parameterized neural network architectures -- universal function approximators -- and gradient-based search algorithms which can efficiently search that large parameter space for optimal models. This approach is predicated by neural network differentiability, the requirement that analytic derivatives of a given problem's task metric can be computed with respect to neural network's parameters. Neural networks excel when an explicit model is not known, and neural network training solves an inverse problem in which a model is computed from data

    Physics at BES-III

    Get PDF
    This physics book provides detailed discussions on important topics in τ\tau-charm physics that will be explored during the next few years at \bes3 . Both theoretical and experimental issues are covered, including extensive reviews of recent theoretical developments and experimental techniques. Among the subjects covered are: innovations in Partial Wave Analysis (PWA), theoretical and experimental techniques for Dalitz-plot analyses, analysis tools to extract absolute branching fractions and measurements of decay constants, form factors, and CP-violation and \DzDzb-oscillation parameters. Programs of QCD studies and near-threshold tau-lepton physics measurements are also discussed.Comment: Edited by Kuang-Ta Chao and Yi-Fang Wan
    corecore