1,336,963 research outputs found

    Machine Learning Bell Nonlocality in Quantum Many-body Systems

    Full text link
    Machine learning, the core of artificial intelligence and big data science, is one of today's most rapidly growing interdisciplinary fields. Recently, its tools and techniques have been adopted to tackle intricate quantum many-body problems. In this work, we introduce machine learning techniques to the detection of quantum nonlocality in many-body systems, with a focus on the restricted-Boltzmann-machine (RBM) architecture. Using reinforcement learning, we demonstrate that RBM is capable of finding the maximum quantum violations of multipartite Bell inequalities with given measurement settings. Our results build a novel bridge between computer-science-based machine learning and quantum many-body nonlocality, which will benefit future studies in both areas.Comment: Main Text: 7 pages, 3 figures. Supplementary Material: 2 pages, 3 figure

    Revealing quantum chaos with machine learning

    Full text link
    Understanding properties of quantum matter is an outstanding challenge in science. In this paper, we demonstrate how machine-learning methods can be successfully applied for the classification of various regimes in single-particle and many-body systems. We realize neural network algorithms that perform a classification between regular and chaotic behavior in quantum billiard models with remarkably high accuracy. We use the variational autoencoder for autosupervised classification of regular/chaotic wave functions, as well as demonstrating that variational autoencoders could be used as a tool for detection of anomalous quantum states, such as quantum scars. By taking this method further, we show that machine learning techniques allow us to pin down the transition from integrability to many-body quantum chaos in Heisenberg XXZ spin chains. For both cases, we confirm the existence of universal W shapes that characterize the transition. Our results pave the way for exploring the power of machine learning tools for revealing exotic phenomena in quantum many-body systems.Comment: 12 pages, 12 figure

    Integrating Neural Networks with a Quantum Simulator for State Reconstruction

    Get PDF
    We demonstrate quantum many-body state reconstruction from experimental data generated by a programmable quantum simulator, by means of a neural network model incorporating known experimental errors. Specifically, we extract restricted Boltzmann machine (RBM) wavefunctions from data produced by a Rydberg quantum simulator with eight and nine atoms in a single measurement basis, and apply a novel regularization technique to mitigate the effects of measurement errors in the training data. Reconstructions of modest complexity are able to capture one- and two-body observables not accessible to experimentalists, as well as more sophisticated observables such as the R\'enyi mutual information. Our results open the door to integration of machine learning architectures with intermediate-scale quantum hardware.Comment: 15 pages, 13 figure

    How Much Information is in a Jet?

    Full text link
    Machine learning techniques are increasingly being applied toward data analyses at the Large Hadron Collider, especially with applications for discrimination of jets with different originating particles. Previous studies of the power of machine learning to jet physics has typically employed image recognition, natural language processing, or other algorithms that have been extensively developed in computer science. While these studies have demonstrated impressive discrimination power, often exceeding that of widely-used observables, they have been formulated in a non-constructive manner and it is not clear what additional information the machines are learning. In this paper, we study machine learning for jet physics constructively, expressing all of the information in a jet onto sets of observables that completely and minimally span N-body phase space. For concreteness, we study the application of machine learning for discrimination of boosted, hadronic decays of Z bosons from jets initiated by QCD processes. Our results demonstrate that the information in a jet that is useful for discrimination power of QCD jets from Z bosons is saturated by only considering observables that are sensitive to 4-body (8 dimensional) phase space.Comment: 14 pages + appendices, 10 figures; v2: JHEP version, updated neural network, included deeper network and boosted decision tree result
    corecore