3,454,757 research outputs found
Governing the post mortem procurement of human body material for research
Human body material removed post mortem is a particularly valuable resource for research. Considering the efforts that are currently being made to study the biochemical processes and possible genetic causes that underlie cancer and cardiovascular and neurodegenerative diseases, it is likely that this type of research will continue to gain in importance. However, post mortem procurement of human body material for research raises specific ethical concerns, more in particular with regard to the consent of the research participant. In this paper, we attempt to determine which consent regime should govern the post mortem procurement of body material for research. In order to do so, we assess the various arguments that could be put forward in support of a duty to make body material available for research purposes after death. We argue that this duty does in practice not support conscription but is sufficiently strong to defend a policy of presumed rather than explicit consent
The mind-body problem; three equations and one solution represented by immaterial-material data
Human life occurs within a complex bio-psycho-social milieu, a heterogeneous system that is integrated by multiple bidirectional interrelations existing between the abstract-intangible ideas and physical-chemical support of environment. The mind is thus placed between the abstract ideas/ concepts and neurobiological brain that is further connected to environment. In other words, the mind acts as an interface between the immaterial (abstract/ intangible) data and material (biological) support. The science is unable to conceives and explains an interaction between the immaterial and material domains (to understand nature of the mind), this question generating in literature the mind-body problem. We have published in the past a succession of articles related to the mind-body problem, in order to demonstrate the fact that this question is actually a false issue. The phenomenon of immaterial-material interaction is impossible to be explained because it never occurs, which means that there is no need to explain the immaterial-material interaction. Our mind implies only a temporal association between the immaterial data and material support, this dynamic interrelation being presented and argued here as a solution to the mind-body problem. The limited psycho-biologic approach of the mind-body problem is expanded here to a more comprehensive and feasible bio-psycho-social perspective, generating thus three distinct (bio- psychological, bio-social, and psycho-social) equations. These three equations can be solved through a solution represented by a dynamic cerebral system (two distinct and interconnected subunits of the brain) which presumably could have the capability of receiving and processing abstract data through association (with no interaction) between immaterial and material data
Tidal deformation of a slowly rotating material body: Interior metric and Love numbers
The metric outside a compact body deformed by a quadrupolar tidal field is
universal up to its Love numbers, constants which encode the tidal response's
dependence on the body's internal structure. For a non-rotating body, the
deformed external geometry is characterized by the familiar gravitational Love
numbers and . For a slowly rotating body,
these must be supplemented by rotational-tidal Love numbers, which measure the
response to couplings between the body's spin and the external tidal field. By
integrating the interior field equations, I find that the response of a
barotropic perfect fluid to spin-coupled tidal perturbations is described by
two rotational-tidal Love numbers, which I calculate explicitly for polytropes.
Two other rotational-tidal Love numbers identified in prior work are found to
have a fixed, universal value for all barotropes. Equipped with the complete
interior solution, I calculate the amplitude of the time-varying internal
currents induced by the gravitomagnetic part of the tidal field. For a typical
neutron star in an equal-mass binary system, the size of the equatorial
velocity perturbation is on the order of kilometers per second.Comment: 19 pages, 7 figures; updated figures and corrected typos; matches the
published versio
Ignitability test method and apparatus
An apparatus for testing ignitability of an initiator includes a body with a central cavity, initiator holder for holding the initiator over the central cavity of the body, an ignition material holder disposed in the central cavity of the body and a cavity facing the initiator holder which receives a measured quantity of ignition material to be ignited by the initiator and a chamber in communication with the cavity of the ignition material holder and the central cavity of the body. A measuring system for analyzing pressure characteristics is generated by ignition material by the initiator. The measuring system includes at least one transducer coupled to an oscillograph for recording pressure traces generated by ignition
Metallic hot wire anemometer
A hot wire anemometer is described which has a body formed of heat resistant metal such as an alloy high in nickel content which supports a probe wire disposed in a V groove in the body. The V groove contains a high temperature ceramic adhesive that partially encompasses the downstream side of the probe wire. Mechanical and electrical connection to the probe wire is achieved through conductive support rods that are constructed of the same high temperature metal, insulation between the body and the conductor rods being provided by a coating of an oxide of the same material which coating is formed in situ. The oxide coating insulates the conductor rods from the body, mechanically fixes the conductors within the body, and maintains its integrity at elevated temperatures
The Critical Challenges from International High-Tech and Computer-Related Crime at the Millennium
The automotive industry stands in front of a great challenge, to decrease its impact on the environment. One important part in succeeding with this is to decrease the structural weight of the body structure and by that the fuel consumption or the required battery power. Carbon fibre composites are by many seen as the only real option when traditional engineering materials are running out of potential for further weight reduction. However, the automotive industry lacks experience working with structural composites and the methods for high volume composite manufacturing are immature. The development of a composite automotive body structure, therefore, needs methods to support and guide the conceptual work to improve the financial and technical results. In this thesis a framework is presented which will provide guidelines for the conceptual phase of the development of an automotive body structure. The framework follows two main paths, one to strive for the ideal material diversity, which also defines an initial partition of the body structure based on the process and material selection. Secondly, a further analysis of the structures are made to evaluate if a more cost and weight efficient solution can be found by a more differential design and by that define the ideal part size. In the case and parameter studies performed, different carbon fibre composite material systems and processes are compared and evaluated. The results show that high performance material system with continuous fibres becomes both more cost and performance effective compared to industrialised discontinuous fibre composites. But also that cycle times, sometimes, are less important than a competitive feedstock cost for a manufacturing process. When further analysing the manufacturing design of the structures it is seen that further partition(s) can become cost effective if the size and complexity is large enough. QC 20140527</p
- …
