427,361 research outputs found
Presence and persistence of Ebola or Marburg virus in patients and survivors: A rapid systematic review
Background: The 2013-15 Ebola outbreak was unprecedented due to sustainedtransmission within urban environments and thousands of survivors. In 2014 the World Health Organization stated that there was insufficient evidence to give definitive guidance about which body fluids are infectious and when they pose a risk to humans. We report a rapid systematic review of published evidence on the presence of filoviruses in body fluids of infected people and survivors. Methods: Scientific articles were screened for information about filovirus in human body fluids. The aim was to find primary data that suggested high likelihood of actively infectious filovirus in human body fluids (viral RNA). Eligible infections were from Marburg virus (MARV or RAVV) and Zaire, Sudan, Taï Forest and Bundibugyo species of Ebola. [1] Cause of infection had to be laboratory confirmed (in practice either tissue culture or RT-PCR tests), or evidenced by compatible clinical history with subsequent positivity for filovirus antibodies or inflammatory factors. Data were extracted and summarized narratively. Results: 6831 unique articles were found, and after screening, 33 studies were eligible. For most body fluid types there were insufficient patients to draw strong conclusions, and prevalence of positivity was highly variable. Body fluids taken >16 days after onset were usually negative. In the six studies that used both assay methods RT-PCR tests for filovirus RNA gave positive results about 4 times more often than tissue culture. Conclusions: Filovirus was reported in most types of body fluid, but not in every sample from every otherwise confirmed patient. Apart from semen, most non-blood, RT-PCR positive samples are likely to be culture negative and so possibly of low infectious risk. Nevertheless, it is not apparent how relatively infectious many body fluids are during or after illness, even when culture-positive, not least because most test results come from more severe cases. Contact with blood and blood-stained body fluids remains the major risk for disease transmission because of the known high viral loads in blood
Apparatus enables automatic microanalysis of body fluids
Apparatus will automatically and quantitatively determine body fluid constituents which are amenable to analysis by fluorometry or colorimetry. The results of the tests are displayed as percentages of full scale deflection on a strip-chart recorder. The apparatus can also be adapted for microanalysis of various other fluids
How shall we use the proteomics toolbox for biomarker discovery?
Biomarker discovery for clinical purposes is one of the major areas in which
proteomics is used. However, despite considerable effort, the successes have
been relatively scarce. In this perspective paper, we try to highlight and
analyze the main causes for this limited success, and to suggest alternate
strategies, which will avoid them, without eluding the foreseeable weak points
of these strategies. Two major strategies are analyzed, namely, the switch from
body fluids to cell and tissues for the initial biomarker discovery step or, if
body fluids must be analyzed, the implementation of highly selective protein
selection strategies
Casimir micro-sphere diclusters and three-body effects in fluids
Our previous article [Phys. Rev. Lett. 104, 060401 (2010)] predicted that
Casimir forces induced by the material-dispersion properties of certain
dielectrics can give rise to stable configurations of objects. This phenomenon
was illustrated via a dicluster configuration of non-touching objects
consisting of two spheres immersed in a fluid and suspended against gravity
above a plate. Here, we examine these predictions from the perspective of a
practical experiment and consider the influence of non-additive, three-body,
and nonzero-temperature effects on the stability of the two spheres. We
conclude that the presence of Brownian motion reduces the set of experimentally
realizable silicon/teflon spherical diclusters to those consisting of layered
micro-spheres, such as the hollow- core (spherical shells) considered here.Comment: 11 pages, 9 figure
Bacterial adenosine triphosphate as a measure of urinary tract infection
Procedure detects and counts bacteria present in urine samples. Method also determines bacterial levels in other aqueous body fluids including lymph fluid, plasma, blood, spinal fluid, saliva and mucous
BIOTEX-biosensing textiles for personalised healthcare management.
Textile-based sensors offer an unobtrusive method of continually monitoring physiological parameters during daily activities. Chemical analysis of body fluids, noninvasively, is a novel and exciting area of personalized wearable healthcare systems. BIOTEX was an EU-funded project that aimed to develop textile sensors to measure physiological parameters and the chemical composition of body fluids, with a particular interest in sweat. A wearable sensing system has been developed that integrates a textile-based fluid handling system for sample collection and transport with a number of sensors including sodium, conductivity, and pH sensors. Sensors for sweat rate, ECG, respiration, and blood oxygenation were also developed. For the first time, it has been possible to monitor a number of physiological parameters together with sweat composition in real time. This has been carried out via a network of wearable sensors distributed around the body of a subject user. This has huge implications for the field of sports and human performance and opens a whole new field of research in the clinical setting
Many-body dipole-induced dipole model for electrorheological fluids
Theoretical investigations on electrorheological (ER) fluids usually rely on
computer simulations. An initial approach for these studies would be the
point-dipole (PD) approximation, which is known to err considerably when the
particles approach and finally touch due to many-body and multipolar
interactions. Thus various work attempted to go beyond the PD model. Being
beyond the PD model, previous attempts have been restricted to either
local-field effects only or multipolar effects only, but not both. For
instance, we recently proposed a dipole-induced-dipole (DID) model which is
shown to be both more accurate than the PD model and easy to use. This work is
necessary because the many-body (local-field) effect is included to put forth
the many-body DID model. The results show that the multipolar interactions can
indeed be dominant over the dipole interaction, while the local-field effect
may yield an important correction.Comment: RevTeX, 3 eps figure
Method of detecting and counting bacteria in body fluids
A novel method is reported for determining bacterial levels in urine samples, which method depends on the quantitative determination of bacterial adenosine triphosphate (ATP) in the presence of non-bacterial ATP. After the removal of non-bacterial ATP, the bacterial ATP is released by cell rupture and is measured by an enzymatic bioluminescent assay using an enzyme obtained from the firefly
Simulating (electro)hydrodynamic effects in colloidal dispersions: smoothed profile method
Previously, we have proposed a direct simulation scheme for colloidal
dispersions in a Newtonian solvent [Phys.Rev.E 71,036707 (2005)]. An improved
formulation called the ``Smoothed Profile (SP) method'' is presented here in
which simultaneous time-marching is used for the host fluid and colloids. The
SP method is a direct numerical simulation of particulate flows and provides a
coupling scheme between the continuum fluid dynamics and rigid-body dynamics
through utilization of a smoothed profile for the colloidal particles.
Moreover, the improved formulation includes an extension to incorporate
multi-component fluids, allowing systems such as charged colloids in
electrolyte solutions to be studied. The dynamics of the colloidal dispersions
are solved with the same computational cost as required for solving
non-particulate flows. Numerical results which assess the hydrodynamic
interactions of colloidal dispersions are presented to validate the SP method.
The SP method is not restricted to particular constitutive models of the host
fluids and can hence be applied to colloidal dispersions in complex fluids
A Simulation Method to Resolve Hydrodynamic Interactions in Colloidal Dispersions
A new computational method is presented to resolve hydrodynamic interactions
acting on solid particles immersed in incompressible host fluids. In this
method, boundaries between solid particles and host fluids are replaced with a
continuous interface by assuming a smoothed profile. This enabled us to
calculate hydrodynamic interactions both efficiently and accurately, without
neglecting many-body interactions. The validity of the method was tested by
calculating the drag force acting on a single cylindrical rod moving in an
incompressible Newtonian fluid. This method was then applied in order to
simulate sedimentation process of colloidal dispersions.Comment: 7pages, 7 figure
- …
