6 research outputs found

    Blurred image splicing localization by exposing blur type inconsistency

    No full text
    In a tampered blurred image generated by splicing, the spliced region and the original image may have different blur types. Splicing localization in this image is a challenging problem when a forger uses some postprocessing operations as antiforensics to remove the splicing traces anomalies by resizing the tampered image or blurring the spliced region boundary. Such operations remove the artifacts that make detection of splicing difficult. In this paper, we overcome this problem by proposing a novel framework for blurred image splicing localization based on the partial blur type inconsistency. In this framework, after the block-based image partitioning, a local blur type detection feature is extracted from the estimated local blur kernels. The image blocks are classified into out-of-focus or motion blur based on this feature to generate invariant blur type regions. Finally, a fine splicing localization is applied to increase the precision of regions boundary. We can use the blur type differences of the regions to trace the inconsistency for the splicing localization. Our experimental results show the efficiency of the proposed method in the detection and the classification of the out-of-focus and motion blur types. For splicing localization, the result demonstrates that our method works well in detecting the inconsistency in the partial blur types of the tampered images. However, our method can be applied to blurred images only. .Accepted versio

    Media Forensics and DeepFakes: an overview

    Full text link
    With the rapid progress of recent years, techniques that generate and manipulate multimedia content can now guarantee a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. So-called deepfakes can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Potential abuses are limited only by human imagination. Therefore, there is an urgent need for automated tools capable of detecting false multimedia content and avoiding the spread of dangerous false information. This review paper aims to present an analysis of the methods for visual media integrity verification, that is, the detection of manipulated images and videos. Special emphasis will be placed on the emerging phenomenon of deepfakes and, from the point of view of the forensic analyst, on modern data-driven forensic methods. The analysis will help to highlight the limits of current forensic tools, the most relevant issues, the upcoming challenges, and suggest future directions for research
    corecore