340 research outputs found

    Competitive Spectrum Management with Incomplete Information

    Full text link
    This paper studies an interference interaction (game) between selfish and independent wireless communication systems in the same frequency band. Each system (player) has incomplete information about the other player's channel conditions. A trivial Nash equilibrium point in this game is where players mutually full spread (FS) their transmit spectrum and interfere with each other. This point may lead to poor spectrum utilization from a global network point of view and even for each user individually. In this paper, we provide a closed form expression for a non pure-FS epsilon-Nash equilibrium point; i.e., an equilibrium point where players choose FDM for some channel realizations and FS for the others. We show that operating in this non pure-FS epsilon-Nash equilibrium point increases each user's throughput and therefore improves the spectrum utilization, and demonstrate that this performance gain can be substantial. Finally, important insights are provided into the behaviour of selfish and rational wireless users as a function of the channel parameters such as fading probabilities, the interference-to-signal ratio

    A Low-Complexity Semi-Analytical Approximation to the Block Error Rate in Nakagami-m Block Fading Channels

    Get PDF
    <p>There are few analytical formulas that can be used for calculating the block error rate (BLER) in block fading channels. Thus, an estimate of the BLER is often obtained using numerical methods. One such method is the threshold method which assigns 0 or 1 to the instantaneous BLER given the signal to noise ratio (SNR) level. It has been shown that utilizing such a method results in an accurate approximation of the BLER in Nakagami-m block fading channels for a wide range of m.</p> <p>In this work, we consider a recently proposed simple method of obtaining the threshold and study the effect of adopting different physical layer and channel parameters on that threshold. We show that, while the value of this threshold depends on the modulation, coding, and block size, it is almost unaffected by the m parameter of Nakagami-m channels for a wide range of practical values. In addition, for a given modulation and coding method, the threshold is shown to be a simple function of block size. As a result, the computational complexity required to obtain the threshold can be significantly reduced.</p

    Applications of Stochastic Ordering to Wireless Communications

    Full text link
    Stochastic orders are binary relations defined on probability distributions which capture intuitive notions like being larger or being more variable. This paper introduces stochastic ordering of instantaneous SNRs of fading channels as a tool to compare the performance of communication systems over different channels. Stochastic orders unify existing performance metrics such as ergodic capacity, and metrics based on error rate functions for commonly used modulation schemes through their relation with convex, and completely monotonic (c.m.) functions. Toward this goal, performance metrics such as instantaneous error rates of M-QAM and M-PSK modulations are shown to be c.m. functions of the instantaneous SNR, while metrics such as the instantaneous capacity are seen to have a completely monotonic derivative (c.m.d.). It is shown that the commonly used parametric fading distributions for modeling line of sight (LoS), exhibit a monotonicity in the LoS parameter with respect to the stochastic Laplace transform order. Using stochastic orders, average performance of systems involving multiple random variables are compared over different channels, even when closed form expressions for such averages are not tractable. These include diversity combining schemes, relay networks, and signal detection over fading channels with non-Gaussian additive noise, which are investigated herein. Simulations are also provided to corroborate our results.Comment: 25 pages, 10 figures, Submitted to the IEEE transactions on wireless communication

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201
    • …
    corecore