6 research outputs found

    Blowup in a Partial Differential Equation with Conserved First Integral

    Full text link

    Mathematical models for cell migration: A non-local perspective

    Get PDF
    We provide a review of recent advancements in non-local continuous models for migration, mainly from the perspective of its involvement in embryonal development and cancer invasion. Particular emphasis is placed on spatial non-locality occurring in advection terms, used to characterize a cell's motility bias according to its interactions with other cellular and acellular components in its vicinity (e.g. cell-cell and cell-tissue adhesions, non-local chemotaxis), but we also briefly address spatially non-local source terms. Following a short introduction and description of applications, we give a systematic classification of available PDE models with respect to the type of featured non-localities and review some of the mathematical challenges arising from such models, with a focus on analytical aspects. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'

    Blowup in a partial differential equation with conserved first integral

    Get PDF
    A reaction-diffusion equation with a nonlocal term is studied. The nonlocal term acts to conserve the spatial integral of the unknown function as time evolves. Such equations give insight into biological and chemical problems where conservation properties predominate. The aim of the paper is to understand how the conservation property affects the nature of blowup. The equation studied has a trivial steady solution that is proved to be stable. Existence of nontrivial steady solutions is proved, and their instability established numerically. Blowup is proved for sufficiently large initial data by using a comparison principle in Fourier space. The nature of the blowup is investigated by a combination of asymptotic and numerical calculations
    corecore