168,448 research outputs found

    Microfluidic flow chambers using reconstituted blood to model hemostasis and platelet transfusion in vitro

    Get PDF
    Blood platelets prepared for transfusion gradually lose hemostatic function during storage. Platelet function can be investigated using a variety of (indirect) in vitro experiments, but none of these is as comprehensive as microfluidic flow chambers. In this protocol, the reconstitution of thrombocytopenic fresh blood with stored blood bank platelets is used to simulate platelet transfusion. Next, the reconstituted sample is perfused in microfluidic flow chambers which mimic hemostasis on exposed subendothelial matrix proteins. Effects of blood donation, transport, component separation, storage and pathogen inactivation can be measured in paired experimental designs. This allows reliable comparison of the impact every manipulation in blood component preparation has on hemostasis. Our results demonstrate the impact of temperature cycling, shear rates, platelet concentration and storage duration on platelet function. In conclusion, this protocol analyzes the function of blood bank platelets and this ultimately aids in optimization of the processing chain including phlebotomy, transport, component preparation, storage and transfusion

    Platelet kinetics in the pulmonary microcirculation in vivo assessed by intravital microscopy

    Get PDF
    Growing evidence supports the substantial pathophysiological impact of platelets on the development of acute lung injury. Methods for studying these cellular mechanisms in vivo are not present yet. The aim of this study was to develop a model enabling the quantitative analysis of platelet kinetics and platelet-endothelium interaction within consecutive segments of the pulmonary microcirculation in vivo. New Zealand White rabbits were anesthetized and ventilated. Autologous platelets were separated from blood and labeled ex vivo with rhodamine 6G. After implantation of a thoracic window, microhemodynamics and kinetics of platelets were investigated by intravital microscopy. Velocities of red blood cells (RBCs) and platelets were measured in arterioles, capillaries and venules, and the number of platelets adhering to the microvascular endothelium was counted. Kinetics of unstimulated platelets was compared with kinetics of thrombin-activated platelets. Velocity of unstimulated platelets was comparable to RBC velocity in all vessel segments. Unstimulated platelets passed the pulmonary microcirculation without substantial platelet-endothelial interaction. In contrast, velocity of activated platelets was decreased in all vascular segments indicating platelet margination and temporal platelet-endothelium interaction. Thrombin-activated platelets adhered to arteriolar endothelium; in capillaries and venules adherence of platelets was increased 8-fold and 13-fold, respectively. In conclusion, using intravital microscopy platelet kinetics were directly analyzed in the pulmonary microcirculation in vivo for the first time. In contrast to leukocytes, no substantial platelet-endothelium interaction occurs in the pulmonary microcirculation without any further stimulus. In response to platelet activation, molecular mechanisms enable adhesion of platelets in arterioles and venules as well as retention of platelets within capillaries. Copyright (C) 2002 S. Karger AG, Basel

    The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas' disease by reducing the platelet sialic acid contents

    Get PDF
    Strong thrombocytopenia is observed during acute infection with Trypanosoma cruzi, the parasitic protozoan agent of American trypanosomiasis or Chagas' disease. The parasite sheds trans-sialidase, an enzyme able to mobilize the sialyl residues on cell surfaces, which is distributed in blood and is a virulence factor. Since the sialic acid content on the platelet surface is crucial for determining the half-life of platelets in blood, we examined the possible involvement of the parasite-derived enzyme in thrombocytopenia induction. We found that a single intravenous injection of trans-sialidase into naïve mice reduced the platelet count by 50%, a transient effect that lasted as long as the enzyme remained in the blood. CD43(−/−) mice were affected to a similar extent. When green fluorescent protein-expressing platelets were treated in vitro with trans-sialidase, their sialic acid content was reduced together with their life span, as determined after transfusion into naïve animals. No apparent deleterious effect on the bone marrow was observed. A central role for Kupffer cells in the clearance of trans-sialidase-altered platelets was revealed after phagocyte depletion by administration of clodronate-containing liposomes and splenectomy. Consistent with this, parasite strains known to exhibit more trans-sialidase activity induced heavier thrombocytopenia. Finally, the passive transfer of a trans-sialidase-neutralizing monoclonal antibody to infected animals prevented the clearance of transfused platelets. Results reported here strongly support the hypothesis that the trans-sialidase is the virulence factor that, after depleting the sialic acid content of platelets, induces the accelerated clearance of the platelets that leads to the thrombocytopenia observed during acute Chagas' disease

    Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets

    Get PDF
    Although tissue factor (TF), the principial initiator of physiological coagulation and pathological thrombosis, has recently been proposed to be present in human blood, the functional significance and location of the intravascular TF is unknown. In the plasma portion of blood, we found TF to be mainly associated with circulating microvesicles. By cell sorting with the specific marker CD42b, platelet-derived microvesicles were identified as a major location of the plasma TF. This was confirmed by the presence of full-length TF in microvesicles acutely shedded from the activated platelets. TF was observed to be stored in the α-granules and the open canalicular system of resting platelets and to be exposed on the cell surface after platelet activation. Functional competence of the blood-based TF was enabled when the microvesicles and platelets adhered to neutrophils, as mediated by P-selectin and neutrophil counterreceptor (PSGL-1, CD18 integrins) interactions. Moreover, neutrophil-secreted oxygen radical species supported the intravascular TF activity. The pools of platelet and microvesicle TF contributed additively and to a comparable extent to the overall blood TF activity, indicating a substantial participation of the microvesicle TF. Our results introduce a new concept of TF-mediated coagulation crucially dependent on TF associated with microvesicles and activated platelets, which principally enables the entire coagulation system to proceed on a restricted cell surface

    Original Effective, Safe Technique of Obtaining Platelet Rich Plasma by Centrifugation of the Blood Plasma in Modified Syringe Containers

    Get PDF
    The aim: to develop, substantiate an effective and safe technology for producing PRP (platelet rich plasma). To quantify the substrate based on the recommended centrifugation protocols.Materials and methods: the effectiveness of the original harvesting protocol was evaluated by quantifying the number of platelets. The proposed technique is formed basing on the basic principles of double centrifugation of whole blood in test tubes with anticoagulant, separation with the release of a plasma layer with a high content of platelets.The centrifuging mode for quantifying the effectiveness of the substrate was selected according to recommendations based on a study confirming maximum efficiency (160g×10min + 250g×15min).For quantitative evaluation, blood was collected from 10 healthy volunteers (7 men, 3 women) with an average age of 26.0±2.6, and centrifuged in standard mode. Quantitative evaluation of platelets of whole blood and the obtained PRP substrate was carried out with a semi-automatic analyzer.Results: the proposed technique is based on the use as a container for centrifuging a syringe with a LuerLock design, which is hermetically sealed with a congruent plug, adapted by the external size of the centrifuge rotor bowl. Phase selection after centrifugation was performed by aspiration of the syringe contents after centrifugation is performed through a three-way valve. The substrate was obtained by repeated centrifugation of the contents, which allows obtaining a variable volume and platelet concentration in PRP. The amount of platelets (PLT) of whole blood is 227.0±57.0 thousand per ml. PLT PRP 945.0±279.0 thousand per ml.Conclusions: the proposed method of separation of whole blood with the release of the platelet rich plasma demonstrates high efficiency, which corresponds to the level of increasing the number of platelets in reducing the volume at the level of the best ready-made solutions.The equipment is economical and does not require highly specialized equipment and consumables. The proposed technique provides a wide choice to the performer in the received volume of the substrate

    Intraoperative blood transfusions in highly alloimmunized patients undergoing orthotopic liver transplantation.

    Get PDF
    Intraoperative blood requirements were analyzed in patients undergoing primary orthotopic liver transplantation and divided into two groups on the basis of panel reactive antibody of pretransplant serum measured by lymphocytotoxicity testing. One group of highly sensitized patients (n = 25) had PRA values of over 70% and the second group of patients (n = 26) had 0% PRA values and were considered nonsensitized. During the transplant procedure, the 70% PRA group received considerably greater quantities of blood products than the 0% PRA group--namely, red blood cells: 21.1 +/- 3.7 vs. 9.8 +/- 0.8 units (P = 0.002), and platelets: 17.7 +/- 3.2 vs. 7.5 +/- 1.5 units (P = 0.003). Similar differences were observed for fresh frozen plasma and cryoprecipitate. Despite the larger infusion of platelets, the blood platelet counts in the 70% PRA group were lower postoperatively than preoperatively. Twenty patients in the 70% PRA group received platelet transfusions, and their mean platelet count dropped from 95,050 +/- 11,537 preoperatively to 67,750 +/- 8,228 postoperatively (P = 0.028). In contrast, nearly identical preoperative (84,058 +/- 17,297) and postoperative (85,647 +/- 12,445) platelet counts were observed in the 17 0% PRA patients who were transfused intraoperatively with platelets. Prothrombin time, activated partial thromboplastin time, and fibrinogen levels showed no significant differences between both groups. These data demonstrate that lymphocytotoxic antibody screening of liver transplant candidates is useful in identifying patients with increased risk of bleeding problems and who will require large quantities of blood during the transplant operation

    A comparison of haematopoietic stem cells from umbilical cord blood and peripheral blood for platelet production in a microfluidic device

    Get PDF
    Background and objectives: Several sources of haematopoietic stem cells have been used for static culture of megakaryocytes to produce platelets in vitro. This study compares and characterizes platelets produced in shear flow using precursor cells from either umbilical (UCB) or adult peripheral blood (PB). Materials and methods: The efficiency of platelet production of the cultured cells was studied after perfusion in custom-built von Willebrand factor-coated microfluidic flow chambers. Platelet receptor expression and morphology were investigated by flow cytometry and microscopy, respectively. Results: Proliferation of stem cells isolated out of UCB was significantly higher (P < 0 center dot 0001) compared to PB. Differentiation of these cells towards megakaryocytes was significantly lower from PB compared to UCB where the fraction of CD42b/CD41 double positive events was 44 +/- 9% versus 76 +/- 11%, respectively (P < 0 center dot 0001). However, in vitro platelet production under hydrodynamic conditions was more efficient with 7 center dot 4 platelet-like particles per input cell from PB compared to 4 center dot 2 from UCB (P = 0 center dot 02). The percentage of events positive for CD42b, CD41 and CD61 was comparable between both stem cell sources. The mean number of receptors per platelet from UCB and PB was similar to that on blood bank platelets with on average 28 000 CD42b, 57 000 CD61 and 5500 CD49b receptors. Microscopy revealed platelets appearing similar to blood bank platelets in morphology, size and actin cytoskeleton, alongside smaller fragments and source megakaryocytes. Conclusion: This characterization study suggests that platelets produced in vitro under flow either from UCB or from PB share receptor expression and morphology with donor platelets stored in the blood bank
    corecore