2 research outputs found

    Blockwise Based Detection of Local Defects

    Full text link
    Print quality is an important criterion for a printer's performance. The detection, classification, and assessment of printing defects can reflect the printer's working status and help to locate mechanical problems inside. To handle all these questions, an efficient algorithm is needed to replace the traditionally visual checking method. In this paper, we focus on pages with local defects including gray spots and solid spots. We propose a coarse-to-fine method to detect local defects in a block-wise manner, and aggregate the blockwise attributes to generate the feature vector of the whole test page for a further ranking task. In the detection part, we first select candidate regions by thresholding a single feature. Then more detailed features of candidate blocks are calculated and sent to a decision tree that is previously trained on our training dataset. The final result is given by the decision tree model to control the false alarm rate while maintaining the required miss rate. Our algorithm is proved to be effective in detecting and classifying local defects compared with previous methods.Comment: 7 pages, 13 figures, IS&T Electronic Imaging 2019 Proceeding

    Boosting High-Level Vision with Joint Compression Artifacts Reduction and Super-Resolution

    Full text link
    Due to the limits of bandwidth and storage space, digital images are usually down-scaled and compressed when transmitted over networks, resulting in loss of details and jarring artifacts that can lower the performance of high-level visual tasks. In this paper, we aim to generate an artifact-free high-resolution image from a low-resolution one compressed with an arbitrary quality factor by exploring joint compression artifacts reduction (CAR) and super-resolution (SR) tasks. First, we propose a context-aware joint CAR and SR neural network (CAJNN) that integrates both local and non-local features to solve CAR and SR in one-stage. Finally, a deep reconstruction network is adopted to predict high quality and high-resolution images. Evaluation on CAR and SR benchmark datasets shows that our CAJNN model outperforms previous methods and also takes 26.2% shorter runtime. Based on this model, we explore addressing two critical challenges in high-level computer vision: optical character recognition of low-resolution texts, and extremely tiny face detection. We demonstrate that CAJNN can serve as an effective image preprocessing method and improve the accuracy for real-scene text recognition (from 85.30% to 85.75%) and the average precision for tiny face detection (from 0.317 to 0.611).Comment: 8 pages, 6 figures, 5 tables. Accepted by the 25th ICPR (2020
    corecore