81 research outputs found

    Congestion probabilities in CDMA-based networks supporting batched Poisson traffic

    Get PDF
    We propose a new multirate teletraffic loss model for the calculation of time and call congestion probabilities in CDMA-based networks that accommodate calls of different serviceclasses whose arrival follows a batched Poisson process. The latter is more "peaked" and "bursty" than the ordinary Poisson process. The acceptance of calls in the system is based on the partial batch blocking discipline. This policy accepts a part of the batch (one or more calls) and discards the rest if the available resources are not enough to accept the whole batch. The proposed model takes into account the multiple access interference, the notion of local (soft) blocking, user’s activity and the interference cancellation. Although the analysis of the model does not lead to a product form solution of the steady state probabilities, we show that the calculation of the call-level performance metrics, time and call congestion probabilities, can be based on approximate but recursive formulas. The accuracy of the proposed formulas are verified through simulation and found to be quite satisfactory

    Performance analysis of CDMA-based networks with interference cancellation, for batched poisson traffic under the Bandwidth Reservation policy

    Get PDF
    CDMA-based technologies deserve assiduous analysis and evaluation. We study the performance, at call-level, of a CDMA cell with interference cancellation capabilities, while assuming that the cell accommodates different service-classes of batched Poisson arriving calls. The partial batch blocking discipline is applied for Call Admission Control (CAC). To guarantee certain Quality of Service (QoS) for each service-class, the Bandwidth Reservation (BR) policy is incorporated in the CAC; i.e., a fraction of system resources is reserved for high-speed service-classes. We propose a new multirate loss model for the calculation of time and call congestion probabilities. The notion of local (soft) and hard blocking, users activity, interference cancellation, as well as the BR policy, are incorporated in the model. Although the steady state probabilities of the system do not have a product form solution, time and call congestion probabilities can be efficiently determined via approximate but recursive formulas. Simulation verified the high accuracy of the new formulas. We also show the consistency of the proposed model in respect of its parameters, while comparison of the proposed model with that of Poisson input shows its necessity

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Discrete-time queueing models: generalized service mechanisms and correlation effects

    Get PDF

    Introduction to Queueing Theory and Stochastic Teletraffic Models

    Full text link
    The aim of this textbook is to provide students with basic knowledge of stochastic models that may apply to telecommunications research areas, such as traffic modelling, resource provisioning and traffic management. These study areas are often collectively called teletraffic. This book assumes prior knowledge of a programming language, mathematics, probability and stochastic processes normally taught in an electrical engineering course. For students who have some but not sufficiently strong background in probability and stochastic processes, we provide, in the first few chapters, background on the relevant concepts in these areas.Comment: 298 page
    • …
    corecore