2 research outputs found

    Blockchain-enabled Wireless IoT Networks with Multiple Communication Connections

    Get PDF
    Blockchain-enabled wireless network has been recognized as an emerging network architecture to be widely employed into the Internet of Things (IoT) ecosystems for establishing trust and consensus mechanisms without the involvement of a third party. However, the uncertainty and vulnerability of wireless channels among the IoT nodes may pose a serious challenge to facilitate the deployment of blockchain in wireless networks. In this paper, we first present a generic system model for blockchain enabled wireless networks with multiple communication connections, where the number of communication connections between a client IoT node and the blockchain full nodes can be any arbitrary positive integer to satisfy different security requirements. Based on the proposed spatial-temporal network model, we theoretically calculate the transmission successful probability and the required communication throughput to support a wireless blockchain network. Finally, simulation results validate the accuracy of our theoretical analysis

    Performance Analysis and Comparison of Non-ideal Wireless PBFT and RAFT Consensus Networks in 6G Communications

    Full text link
    Due to advantages in security and privacy, blockchain is considered a key enabling technology to support 6G communications. Practical Byzantine Fault Tolerance (PBFT) and RAFT are seen as the most applicable consensus mechanisms (CMs) in blockchain-enabled wireless networks. However, previous studies on PBFT and RAFT rarely consider the channel performance of the physical layer, such as path loss and channel fading, resulting in research results that are far from real networks. Additionally, 6G communications will widely deploy high-frequency signals such as terahertz (THz) and millimeter wave (mmWave), while performances of PBFT and RAFT are still unknown when these signals are transmitted in wireless PBFT or RAFT networks. Therefore, it is urgent to study the performance of non-ideal wireless PBFT and RAFT networks with THz and mmWave signals, to better make PBFT and RAFT play a role in the 6G era. In this paper, we study and compare the performance of THz and mmWave signals in non-ideal wireless PBFT and RAFT networks, considering Rayleigh Fading (RF) and close-in Free Space (FS) reference distance path loss. Performance is evaluated by five metrics: consensus success rate, latency, throughput, reliability gain, and energy consumption. Meanwhile, we find and derive that there is a maximum distance between two nodes that can make CMs inevitably successful, and it is named the active distance of CMs. The research results not only analyze the performance of non-ideal wireless PBFT and RAFT networks, but also provide important references for the future transmission of THz and mmWave signals in PBFT and RAFT networks.Comment: arXiv admin note: substantial text overlap with arXiv:2303.1575
    corecore