1,162 research outputs found

    HealthBlock: A Blockchain-IoT Fusion for Secure Healthcare Data Exchange

    Get PDF
    Managing healthcare data while ensuring its security and privacy is critical to providing quality care to patients. However, traditional approaches to healthcare data sharing have limitations, including the risk of data breaches and the lack of privacy-preserving mechanisms. This research paper proposes a novel hybrid blockchain-IoT approach for privacy-preserving healthcare data sharing that addresses these challenges. Our system incorporates a private blockchain for protected and tamper-proof data sharing, with privacy-preserving techniques such as differential privacy and homomorphic encryption to protect patient data. IoT devices are utilized to collect and transmit real-time data, equipped with privacy-preserving mechanisms such as data anonymization and secure transmission protocols. Our approach achieved an accuracy rate of 98% for access control and a 99.6% success rate for data privacy protection. Furthermore, our proposed system demonstrated improved data storage and retrieval performance, with a data storage overhead reduction of up to 86% and a data retrieval time reduction of up to 81%. These results indicate the potential of our approach to enhance the security, privacy, and efficiency of healthcare data management, contributing to improved patient care outcomes

    Blockchain for the metaverse: A Review

    Get PDF
    Since Facebook officially changed its name to Meta in Oct. 2021, the metaverse has become a new norm of social networks and three-dimensional (3D) virtual worlds. The metaverse aims to bring 3D immersive and personalized experiences to users by leveraging many pertinent technologies. Despite great attention and benefits, a natural question in the metaverse is how to secure its users’ digital content and data. In this regard, blockchain is a promising solution owing to its distinct features of decentralization, immutability, and transparency. To better understand the role of blockchain in the metaverse, we aim to provide an extensive survey on the applications of blockchain for the metaverse. We first present a preliminary to blockchain and the metaverse and highlight the motivations behind the use of blockchain for the metaverse. Next, we extensively discuss blockchain-based methods for the metaverse from technical perspectives, such as data acquisition, data storage, data sharing, data interoperability, and data privacy preservation. For each perspective, we first discuss the technical challenges of the metaverse and then highlight how blockchain can help. Moreover, we investigate the impact of blockchain on key-enabling technologies in the metaverse, including Internet-of-Things, digital twins, multi-sensory and immersive applications, artificial intelligence, and big data. We also present some major projects to showcase the role of blockchain in metaverse applications and services. Finally, we present some promising directions to drive further research innovations and developments toward the use of blockchain in the metaverse in the future

    Dwarna : a blockchain solution for dynamic consent in biobanking

    Get PDF
    Dynamic consent aims to empower research partners and facilitate active participation in the research process. Used within the context of biobanking, it gives individuals access to information and control to determine how and where their biospecimens and data should be used. We present Dwarna—a web portal for ‘dynamic consent’ that acts as a hub connecting the different stakeholders of the Malta Biobank: biobank managers, researchers, research partners, and the general public. The portal stores research partners’ consent in a blockchain to create an immutable audit trail of research partners’ consent changes. Dwarna’s structure also presents a solution to the European Union’s General Data Protection Regulation’s right to erasure—a right that is seemingly incompatible with the blockchain model. Dwarna’s transparent structure increases trustworthiness in the biobanking process by giving research partners more control over which research studies they participate in, by facilitating the withdrawal of consent and by making it possible to request that the biospecimen and associated data are destroyed.peer-reviewe

    Advancing Healthcare Security: A Cutting-Edge Zero-Trust Blockchain Solution for Protecting Electronic Health Records

    Get PDF
    The effective management of electronic health records (EHRs) is vital in healthcare. However, traditional systems often need help handling data inconsistently, providing limited access, and coordinating poorly across facilities. This study aims to tackle these issues using blockchain technology to improve EHR systems' data security, privacy, and interoperability. By thoroughly analyzing blockchain's applications in healthcare, we propose an innovative solution that leverages blockchain's decentralized and immutable nature, combined with advanced encryption techniques such as the Advanced Encryption Standard and Zero Knowledge Proof Protocol, to fortify EHR systems. Our research demonstrates that blockchain can effectively overcome significant EHR challenges, including fragmented data and interoperability problems, by facilitating secure and transparent data exchange, leading to enhanced coordination, care quality, and cost-efficiency across healthcare facilities. This study offers practical guidelines for implementing blockchain technology in healthcare, emphasizing a balanced approach to interoperability, privacy, and security. It represents a significant advancement over traditional EHR systems, boosting security and affording patients greater control over their health records. Doi: 10.28991/HIJ-2023-04-03-012 Full Text: PD

    Blockchain for automotive: An insight towards the IPFS blockchain-based auto insurance sector

    Get PDF
    The advancing technology and industrial revolution have taken the automotive industry by storm in recent times. The auto sector’s constantly growing demand has paved the way for the automobile sector to embrace new technologies and disruptive innovations. The multi-trillion dollar, complex auto insurance sector is still stuck in the regulations of the past. Most of the customers still contact the insurance company by phone to buy new policies and process existing insurance claims. The customers still face the risk of fraudulent online brokers, as policies are mostly signed and processed on papers which often require human supervision, with a risk of error. The insurance sector faces a threat of failure due to losing and misconception of policies and information. We present a decentralized IPFS and blockchain-based framework for the auto insurance sector that regulates the activities in terms of insurance claims for automobiles and automates payments. This article also discusses how blockchain technology’s features can be useful for the decentralized autonomous vehicle’s ecosystem

    On the Convergence of Blockchain and Internet of Things (IoT) Technologies

    Full text link
    The Internet of Things (IoT) technology will soon become an integral part of our daily lives to facilitate the control and monitoring of processes and objects and revolutionize the ways that human interacts with the physical world. For all features of IoT to become fully functional in practice, there are several obstacles on the way to be surmounted and critical challenges to be addressed. These include, but are not limited to cybersecurity, data privacy, energy consumption, and scalability. The Blockchain decentralized nature and its multi-faceted procedures offer a useful mechanism to tackle several of these IoT challenges. However, applying the Blockchain protocols to IoT without considering their tremendous computational loads, delays, and bandwidth overhead can let to a new set of problems. This review evaluates some of the main challenges we face in the integration of Blockchain and IoT technologies and provides insights and high-level solutions that can potentially handle the shortcomings and constraints of both IoT and Blockchain technologies.Comment: Includes 11 Pages, 3 Figures, To publish in Journal of Strategic Innovation and Sustainability for issue JSIS 14(1

    Data trust framework using blockchain and smart contracts

    Get PDF
    Lack of trust is the main barrier preventing more widespread data sharing. The lack of transparent and reliable infrastructure for data sharing prevents many data owners from sharing their data. Data trust is a paradigm that facilitates data sharing by forcing data controllers to be transparent about the process of sharing and reusing data. Blockchain technology has the potential to present the essential properties for creating a practical and secure data trust framework by transforming current auditing practices and automatic enforcement of smart contracts logic without relying on intermediaries to establish trust. Blockchain holds an enormous potential to remove the barriers of traditional centralized applications and propose a distributed and transparent administration by employing the involved parties to maintain consensus on the ledger. Furthermore, smart contracts are a programmable component that provides blockchain with more flexible and powerful capabilities. Recent advances in blockchain platforms toward smart contracts' development have revealed the possibility of implementing blockchain-based applications in various domains, such as health care, supply chain and digital identity. This dissertation investigates the blockchain's potential to present a framework for data trust. It starts with a comprehensive study of smart contracts as the main component of blockchain for developing decentralized data trust. Interrelated, three decentralized applications that address data sharing and access control problems in various fields, including healthcare data sharing, business process, and physical access control system, have been developed and examined. In addition, a general-purpose application based on an attribute-based access control model is proposed that can provide trusted auditability required for data sharing and access control systems and, ultimately, a data trust framework. Besides auditing, the system presents a transparency level that both access requesters (data users) and resource owners (data controllers) can benefit from. The proposed solutions have been validated through a use case of independent digital libraries. It also provides a detailed performance analysis of the system implementation. The performance results have been compared based on different consensus mechanisms and databases, indicating the system's high throughput and low latency. Finally, this dissertation presents an end-to-end data trust framework based on blockchain technology. The proposed framework promotes data trustworthiness by assessing input datasets, effectively managing access control, and presenting data provenance and activity monitoring. A trust assessment model that examines the trustworthiness of input data sets and calculates the trust value is presented. The number of transaction validators is defined adaptively with the trust value. This research provides solutions for both data owners and data users’ by ensuring the trustworthiness and quality of the data at origin and transparent and secure usage of the data at the end. A comprehensive experimental study indicates the presented system effectively handles a large number of transactions with low latency
    • …
    corecore