2,282 research outputs found

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Ear Biometrics: A Comprehensive Study of Taxonomy, Detection, and Recognition Methods

    Get PDF
    Due to the recent challenges in access control, surveillance and security, there is an increased need for efficient human authentication solutions. Ear recognition is an appealing choice to identify individuals in controlled or challenging environments. The outer part of the ear demonstrates high discriminative information across individuals and has shown to be robust for recognition. In addition, the data acquisition procedure is contactless, non-intrusive, and covert. This work focuses on using ear images for human authentication in visible and thermal spectrums. We perform a systematic study of the ear features and propose a taxonomy for them. Also, we investigate the parts of the head side view that provides distinctive identity cues. Following, we study the different modules of the ear recognition system. First, we propose an ear detection system that uses deep learning models. Second, we compare machine learning methods to state traditional systems\u27 baseline ear recognition performance. Third, we explore convolutional neural networks for ear recognition and the optimum learning process setting. Fourth, we systematically evaluate the performance in the presence of pose variation or various image artifacts, which commonly occur in real-life recognition applications, to identify the robustness of the proposed ear recognition models. Additionally, we design an efficient ear image quality assessment tool to guide the ear recognition system. Finally, we extend our work for ear recognition in the long-wave infrared domains

    On Designing Tattoo Registration and Matching Approaches in the Visible and SWIR Bands

    Get PDF
    Face, iris and fingerprint based biometric systems are well explored areas of research. However, there are law enforcement and military applications where neither of the aforementioned modalities may be available to be exploited for human identification. In such applications, soft biometrics may be the only clue available that can be used for identification or verification purposes. Tattoo is an example of such a soft biometric trait. Unlike face-based biometric systems that used in both same-spectral and cross-spectral matching scenarios, tattoo-based human identification is still a not fully explored area of research. At this point in time there are no pre-processing, feature extraction and matching algorithms using tattoo images captured at multiple bands. This thesis is focused on exploring solutions on two main challenging problems. The first one is cross-spectral tattoo matching. The proposed algorithmic approach is using as an input raw Short-Wave Infrared (SWIR) band tattoo images and matches them successfully against their visible band counterparts. The SWIR tattoo images are captured at 1100 nm, 1200 nm, 1300 nm, 1400 nm and 1500 nm. After an empirical study where multiple photometric normalization techniques were used to pre-process the original multi-band tattoo images, only one was determined to significantly improve cross spectral tattoo matching performance. The second challenging problem was to develop a fully automatic visible-based tattoo image registration system based on SIFT descriptors and the RANSAC algorithm with a homography model. The proposed automated registration approach significantly improves the operational cost of a tattoo image identification system (using large scale tattoo image datasets), where the alignment of a pair of tattoo images by system operators needs to be performed manually. At the same time, tattoo matching accuracy is also improved (before vs. after automated alignment) by 45.87% for the NIST-Tatt-C database and 12.65% for the WVU-Tatt database

    Distortion Robust Biometric Recognition

    Get PDF
    abstract: Information forensics and security have come a long way in just a few years thanks to the recent advances in biometric recognition. The main challenge remains a proper design of a biometric modality that can be resilient to unconstrained conditions, such as quality distortions. This work presents a solution to face and ear recognition under unconstrained visual variations, with a main focus on recognition in the presence of blur, occlusion and additive noise distortions. First, the dissertation addresses the problem of scene variations in the presence of blur, occlusion and additive noise distortions resulting from capture, processing and transmission. Despite their excellent performance, ’deep’ methods are susceptible to visual distortions, which significantly reduce their performance. Sparse representations, on the other hand, have shown huge potential capabilities in handling problems, such as occlusion and corruption. In this work, an augmented SRC (ASRC) framework is presented to improve the performance of the Spare Representation Classifier (SRC) in the presence of blur, additive noise and block occlusion, while preserving its robustness to scene dependent variations. Different feature types are considered in the performance evaluation including image raw pixels, HoG and deep learning VGG-Face. The proposed ASRC framework is shown to outperform the conventional SRC in terms of recognition accuracy, in addition to other existing sparse-based methods and blur invariant methods at medium to high levels of distortion, when particularly used with discriminative features. In order to assess the quality of features in improving both the sparsity of the representation and the classification accuracy, a feature sparse coding and classification index (FSCCI) is proposed and used for feature ranking and selection within both the SRC and ASRC frameworks. The second part of the dissertation presents a method for unconstrained ear recognition using deep learning features. The unconstrained ear recognition is performed using transfer learning with deep neural networks (DNNs) as a feature extractor followed by a shallow classifier. Data augmentation is used to improve the recognition performance by augmenting the training dataset with image transformations. The recognition performance of the feature extraction models is compared with an ensemble of fine-tuned networks. The results show that, in the case where long training time is not desirable or a large amount of data is not available, the features from pre-trained DNNs can be used with a shallow classifier to give a comparable recognition accuracy to the fine-tuned networks.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Ear Identification by Fusion of Segmented Slice Regions using Invariant Features: An Experimental Manifold with Dual Fusion Approach

    Full text link
    This paper proposes a robust ear identification system which is developed by fusing SIFT features of color segmented slice regions of an ear. The proposed ear identification method makes use of Gaussian mixture model (GMM) to build ear model with mixture of Gaussian using vector quantization algorithm and K-L divergence is applied to the GMM framework for recording the color similarity in the specified ranges by comparing color similarity between a pair of reference ear and probe ear. SIFT features are then detected and extracted from each color slice region as a part of invariant feature extraction. The extracted keypoints are then fused separately by the two fusion approaches, namely concatenation and the Dempster-Shafer theory. Finally, the fusion approaches generate two independent augmented feature vectors which are used for identification of individuals separately. The proposed identification technique is tested on IIT Kanpur ear database of 400 individuals and is found to achieve 98.25% accuracy for identification while top 5 matched criteria is set for each subject.Comment: 12 pages, 3 figure

    Proof-of-Concept

    Get PDF
    Biometry is an area in great expansion and is considered as possible solution to cases where high authentication parameters are required. Although this area is quite advanced in theoretical terms, using it in practical terms still carries some problems. The systems available still depend on a high cooperation level to achieve acceptable performance levels, which was the backdrop to the development of the following project. By studying the state of the art, we propose the creation of a new and less cooperative biometric system that reaches acceptable performance levels.A constante necessidade de parâmetros mais elevados de segurança, nomeadamente ao nível de autenticação, leva ao estudo biometria como possível solução. Actualmente os mecanismos existentes nesta área tem por base o conhecimento de algo que se sabe ”password” ou algo que se possui ”codigo Pin”. Contudo este tipo de informação é facilmente corrompida ou contornada. Desta forma a biometria é vista como uma solução mais robusta, pois garante que a autenticação seja feita com base em medidas físicas ou compartimentais que definem algo que a pessoa é ou faz (”who you are” ou ”what you do”). Sendo a biometria uma solução bastante promissora na autenticação de indivíduos, é cada vez mais comum o aparecimento de novos sistemas biométricos. Estes sistemas recorrem a medidas físicas ou comportamentais, de forma a possibilitar uma autenticação (reconhecimento) com um grau de certeza bastante considerável. O reconhecimento com base no movimento do corpo humano (gait), feições da face ou padrões estruturais da íris, são alguns exemplos de fontes de informação em que os sistemas actuais se podem basear. Contudo, e apesar de provarem um bom desempenho no papel de agentes de reconhecimento autónomo, ainda estão muito dependentes a nível de cooperação exigida. Tendo isto em conta, e tudo o que já existe no ramo do reconhecimento biometrico, esta área está a dar passos no sentido de tornar os seus métodos o menos cooperativos poss??veis. Possibilitando deste modo alargar os seus objectivos para além da mera autenticação em ambientes controlados, para casos de vigilância e controlo em ambientes não cooperativos (e.g. motins, assaltos, aeroportos). É nesta perspectiva que o seguinte projecto surge. Através do estudo do estado da arte, pretende provar que é possível criar um sistema capaz de agir perante ambientes menos cooperativos, sendo capaz de detectar e reconhecer uma pessoa que se apresente ao seu alcance.O sistema proposto PAIRS (Periocular and Iris Recognition Systema) tal como nome indica, efectua o reconhecimento através de informação extraída da íris e da região periocular (região circundante aos olhos). O sistema é construído com base em quatro etapas: captura de dados, pré-processamento, extração de características e reconhecimento. Na etapa de captura de dados, foi montado um dispositivo de aquisição de imagens com alta resolução com a capacidade de capturar no espectro NIR (Near-Infra-Red). A captura de imagens neste espectro tem como principal linha de conta, o favorecimento do reconhecimento através da íris, visto que a captura de imagens sobre o espectro visível seria mais sensível a variações da luz ambiente. Posteriormente a etapa de pré-processamento implementada, incorpora todos os módulos do sistema responsáveis pela detecção do utilizador, avaliação de qualidade de imagem e segmentação da íris. O modulo de detecção é responsável pelo desencadear de todo o processo, uma vez que esta é responsável pela verificação da exist?ncia de um pessoa em cena. Verificada a sua exist?ncia, são localizadas as regiões de interesse correspondentes ? íris e ao periocular, sendo também verificada a qualidade com que estas foram adquiridas. Concluídas estas etapas, a íris do olho esquerdo é segmentada e normalizada. Posteriormente e com base em vários descritores, é extraída a informação biométrica das regiões de interesse encontradas, e é criado um vector de características biométricas. Por fim, é efectuada a comparação dos dados biometricos recolhidos, com os já armazenados na base de dados, possibilitando a criação de uma lista com os níveis de semelhança em termos biometricos, obtendo assim um resposta final do sistema. Concluída a implementação do sistema, foi adquirido um conjunto de imagens capturadas através do sistema implementado, com a participação de um grupo de voluntários. Este conjunto de imagens permitiu efectuar alguns testes de desempenho, verificar e afinar alguns parâmetros, e proceder a optimização das componentes de extração de características e reconhecimento do sistema. Analisados os resultados foi possível provar que o sistema proposto tem a capacidade de exercer as suas funções perante condições menos cooperativas
    corecore