8 research outputs found

    Ear Identification by Fusion of Segmented Slice Regions using Invariant Features: An Experimental Manifold with Dual Fusion Approach

    Full text link
    This paper proposes a robust ear identification system which is developed by fusing SIFT features of color segmented slice regions of an ear. The proposed ear identification method makes use of Gaussian mixture model (GMM) to build ear model with mixture of Gaussian using vector quantization algorithm and K-L divergence is applied to the GMM framework for recording the color similarity in the specified ranges by comparing color similarity between a pair of reference ear and probe ear. SIFT features are then detected and extracted from each color slice region as a part of invariant feature extraction. The extracted keypoints are then fused separately by the two fusion approaches, namely concatenation and the Dempster-Shafer theory. Finally, the fusion approaches generate two independent augmented feature vectors which are used for identification of individuals separately. The proposed identification technique is tested on IIT Kanpur ear database of 400 individuals and is found to achieve 98.25% accuracy for identification while top 5 matched criteria is set for each subject.Comment: 12 pages, 3 figure

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Block-based and multi-resolution methods for ear recognition using wavelet transform and uniform local binary patterns

    No full text

    Distortion Robust Biometric Recognition

    Get PDF
    abstract: Information forensics and security have come a long way in just a few years thanks to the recent advances in biometric recognition. The main challenge remains a proper design of a biometric modality that can be resilient to unconstrained conditions, such as quality distortions. This work presents a solution to face and ear recognition under unconstrained visual variations, with a main focus on recognition in the presence of blur, occlusion and additive noise distortions. First, the dissertation addresses the problem of scene variations in the presence of blur, occlusion and additive noise distortions resulting from capture, processing and transmission. Despite their excellent performance, ā€™deepā€™ methods are susceptible to visual distortions, which significantly reduce their performance. Sparse representations, on the other hand, have shown huge potential capabilities in handling problems, such as occlusion and corruption. In this work, an augmented SRC (ASRC) framework is presented to improve the performance of the Spare Representation Classifier (SRC) in the presence of blur, additive noise and block occlusion, while preserving its robustness to scene dependent variations. Different feature types are considered in the performance evaluation including image raw pixels, HoG and deep learning VGG-Face. The proposed ASRC framework is shown to outperform the conventional SRC in terms of recognition accuracy, in addition to other existing sparse-based methods and blur invariant methods at medium to high levels of distortion, when particularly used with discriminative features. In order to assess the quality of features in improving both the sparsity of the representation and the classification accuracy, a feature sparse coding and classification index (FSCCI) is proposed and used for feature ranking and selection within both the SRC and ASRC frameworks. The second part of the dissertation presents a method for unconstrained ear recognition using deep learning features. The unconstrained ear recognition is performed using transfer learning with deep neural networks (DNNs) as a feature extractor followed by a shallow classifier. Data augmentation is used to improve the recognition performance by augmenting the training dataset with image transformations. The recognition performance of the feature extraction models is compared with an ensemble of fine-tuned networks. The results show that, in the case where long training time is not desirable or a large amount of data is not available, the features from pre-trained DNNs can be used with a shallow classifier to give a comparable recognition accuracy to the fine-tuned networks.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Automated Computational Techniques for High-throughput Image Analysis of Skin Structure

    Get PDF
    Biological image processing and analysis are concerned with enhancing and quantifying features that reflect different pathological states, based on the use of combinations of image processing algorithms. The integration of image processing and analysis techniques to evaluate and assess skin integrity in both human and mouse models is a major theme in this thesis. More specifically, this thesis describes computational systems for high-throughput analysis of skin tissue section images and non-invasive imaging techniques. As the skin is a largest organ in the mammalian body, and is complex in structure, manual quantification and analysis a hard task for the observer to determine an objective result, and furthermore, the analysis is complex in terms of accuracy and time taken. To look at the gross morphology of the skin, I developed high throughput analysis based on an adaptive active contour model to isolate the skin layers and provide quantification methods. This was utilised in a study to evaluate cutaneous morphology in 475 knockout mouse lines provided by the Mouse Genetics Project (MGP) pipeline, that was generated by the Wellcome Trust Sanger Institute (WTSI). This is a major international initiative to provide both functional annotation of the mammalian genome and insight into the genetic basis of disease. I found 53 interesting adipocyte phenotypes, 18 interesting dermal phenotypes and 3 interesting epidermal phenotypes. I also focussed on the analysis of collagen in the dermis of skin images in several ways. For collagen structure analysis, I developed a combined system of Gabor filtering and Fast Fourier Transform FFT. This analysis allowed the detection of subtle changes in collagen organisation. Using similar images, I also measured collagen bundle thickness by computing the maximum frequency of the FFT power spectrum. To assess collagen dynamics, I developed k-means clustering for segmentation based on colour distribution. The use of this approach allowed the measurement of dermal degradation with age and disease, which was not possible by existing means. Obtaining human skin material to facilitate the drug discovery and development process is not an easy task. The manipulation, monitoring and cost of human subjects makes the use of mouse models more suitable for high-throughput screening. Therefore, I have evaluated skin integrity from mouse tissue rather than human skin, however, mouse skin is thinner than human skin and many morphological features are easier to visualise in human skin, which has implications for analysis. Skin moulds can be used to create an impression of the skin surface. Changes in texture of skin can reflect skin conditions. I developed a skin surface structure analysis system to measure the degree of change in texture of the human skin surface. The alterations detected in texture parameters in skin mould impressions reflected changes caused by sun exposure, ageing and many other clinical parameters. I compared my analysis with the existing Beagley-Gibson scoring system to find correlations between automated and manual analysis to inform a decision on the use of optimal methods. By removing subjectivity of manual methods, I was able to develop a robust system to evaluate, for example, damage resulting from UV exposure. My experimental analysis indicated that techniques developed in this thesis were able to analyse both histological samples and skin surface images in high-throughput experiments. They could, therefore, make a contribution to biological image analysis by providing accurate results to help clinical decision making, and facilitate biological laboratory experiments to improve the quality of research in this field, and save time. Overall, my thesis demonstrated that accurate analysis of the skin to gain meaningful biological information requires an automated system that can achieve feature extraction, quantification, analysis and decision making to find interesting phenotypes and abnormalities. This will help the evaluation of the effects of a specific treatment, and answer many biological questions in fields of cosmetic dermatology and drug discovery, and improve our understanding of the genetic basis of disease
    corecore