5 research outputs found

    Shonan Rotation Averaging: Global Optimality by Surfing SO(p)nSO(p)^n

    Full text link
    Shonan Rotation Averaging is a fast, simple, and elegant rotation averaging algorithm that is guaranteed to recover globally optimal solutions under mild assumptions on the measurement noise. Our method employs semidefinite relaxation in order to recover provably globally optimal solutions of the rotation averaging problem. In contrast to prior work, we show how to solve large-scale instances of these relaxations using manifold minimization on (only slightly) higher-dimensional rotation manifolds, re-using existing high-performance (but local) structure-from-motion pipelines. Our method thus preserves the speed and scalability of current SFM methods, while recovering globally optimal solutions.Comment: 30 pages (paper + supplementary material). To appear at the European Conference on Computer Vision (ECCV) 202

    Asynchronous and Parallel Distributed Pose Graph Optimization

    Full text link
    We present Asynchronous Stochastic Parallel Pose Graph Optimization (ASAPP), the first asynchronous algorithm for distributed pose graph optimization (PGO) in multi-robot simultaneous localization and mapping. By enabling robots to optimize their local trajectory estimates without synchronization, ASAPP offers resiliency against communication delays and alleviates the need to wait for stragglers in the network. Furthermore, ASAPP can be applied on the rank-restricted relaxations of PGO, a crucial class of non-convex Riemannian optimization problems that underlies recent breakthroughs on globally optimal PGO. Under bounded delay, we establish the global first-order convergence of ASAPP using a sufficiently small stepsize. The derived stepsize depends on the worst-case delay and inherent problem sparsity, and furthermore matches known result for synchronous algorithms when there is no delay. Numerical evaluations on simulated and real-world datasets demonstrate favorable performance compared to state-of-the-art synchronous approach, and show ASAPP's resilience against a wide range of delays in practice.Comment: full paper with appendice

    Rotation Coordinate Descent for Fast Globally Optimal Rotation Averaging

    Full text link
    Under mild conditions on the noise level of the measurements, rotation averaging satisfies strong duality, which enables global solutions to be obtained via semidefinite programming (SDP) relaxation. However, generic solvers for SDP are rather slow in practice, even on rotation averaging instances of moderate size, thus developing specialised algorithms is vital. In this paper, we present a fast algorithm that achieves global optimality called rotation coordinate descent (RCD). Unlike block coordinate descent (BCD) which solves SDP by updating the semidefinite matrix in a row-by-row fashion, RCD directly maintains and updates all valid rotations throughout the iterations. This obviates the need to store a large dense semidefinite matrix. We mathematically prove the convergence of our algorithm and empirically show its superior efficiency over state-of-the-art global methods on a variety of problem configurations. Maintaining valid rotations also facilitates incorporating local optimisation routines for further speed-ups. Moreover, our algorithm is simple to implement; see supplementary material for a demonstration program.Comment: Accepted to CVPR 2021 as an oral presentatio

    Distributed Optimization in Sensor Network for Scalable Multi-Robot Relative State Estimation

    Full text link
    Distance measurements demonstrate distinctive scalability when used for relative state estimation in large-scale multi-robot systems. Despite the attractiveness of distance measurements, multi-robot relative state estimation based on distance measurements raises a tricky optimization problem, especially in the context of large-scale systems. Motivated by this, we aim to develop specialized computational techniques that enable robust and efficient estimation when deploying distance measurements at scale. We first reveal the commonality between the estimation problem and the one that finds realization of a sensor network, from which we draw crucial lesson to inspire the proposed methods. However, solving the latter problem in large-scale (still) requires distributed optimization schemes with scalability natures, efficient computational procedures, and fast convergence rates. Towards this goal, we propose a complementary pair of distributed computational techniques with the classical block coordinate descent (BCD) algorithm as a unified backbone. In the first method, we treat Burer-Monteiro factorization as a rank-restricted heuristic for rank-constrained semidefinite programming (SDP), where a specialized BCD-type algorithm that analytically solve each block update subproblem is employed. Although this method enables robust and (extremely) fast recovery of estimates from initial guesses, it inevitably fails as the initialization becomes disorganized. We therefore propose the second method, derived from a convex formulation named anchored edge-based semidefinite programming} (ESDP), to complement it, at the expense of a certain loss of efficiency. This formulation is structurally decomposable so that BCD can be naturally employed, where each subproblem is convex and (again) solved exactly...Comment: Extended technical report (14 pages, 5 figures, 2 tables
    corecore