4,931 research outputs found

    Compression-Based Compressed Sensing

    Full text link
    Modern compression algorithms exploit complex structures that are present in signals to describe them very efficiently. On the other hand, the field of compressed sensing is built upon the observation that "structured" signals can be recovered from their under-determined set of linear projections. Currently, there is a large gap between the complexity of the structures studied in the area of compressed sensing and those employed by the state-of-the-art compression codes. Recent results in the literature on deterministic signals aim at bridging this gap through devising compressed sensing decoders that employ compression codes. This paper focuses on structured stochastic processes and studies the application of rate-distortion codes to compressed sensing of such signals. The performance of the formerly-proposed compressible signal pursuit (CSP) algorithm is studied in this stochastic setting. It is proved that in the very low distortion regime, as the blocklength grows to infinity, the CSP algorithm reliably and robustly recovers nn instances of a stationary process from random linear projections as long as their count is slightly more than nn times the rate-distortion dimension (RDD) of the source. It is also shown that under some regularity conditions, the RDD of a stationary process is equal to its information dimension (ID). This connection establishes the optimality of the CSP algorithm at least for memoryless stationary sources, for which the fundamental limits are known. Finally, it is shown that the CSP algorithm combined by a family of universal variable-length fixed-distortion compression codes yields a family of universal compressed sensing recovery algorithms

    Compressive Source Separation: Theory and Methods for Hyperspectral Imaging

    Get PDF
    With the development of numbers of high resolution data acquisition systems and the global requirement to lower the energy consumption, the development of efficient sensing techniques becomes critical. Recently, Compressed Sampling (CS) techniques, which exploit the sparsity of signals, have allowed to reconstruct signal and images with less measurements than the traditional Nyquist sensing approach. However, multichannel signals like Hyperspectral images (HSI) have additional structures, like inter-channel correlations, that are not taken into account in the classical CS scheme. In this paper we exploit the linear mixture of sources model, that is the assumption that the multichannel signal is composed of a linear combination of sources, each of them having its own spectral signature, and propose new sampling schemes exploiting this model to considerably decrease the number of measurements needed for the acquisition and source separation. Moreover, we give theoretical lower bounds on the number of measurements required to perform reconstruction of both the multichannel signal and its sources. We also proposed optimization algorithms and extensive experimentation on our target application which is HSI, and show that our approach recovers HSI with far less measurements and computational effort than traditional CS approaches.Comment: 32 page
    • …
    corecore