46 research outputs found

    Block Neural Autoregressive Flow

    Get PDF
    Normalising flows (NFS) map two density functions via a differentiable bijection whose Jacobian determinant can be computed efficiently. Recently, as an alternative to hand-crafted bijections, Huang et al. (2018) proposed neural autoregressive flow (NAF) which is a universal approximator for density functions. Their flow is a neural network (NN) whose parameters are predicted by another NN. The latter grows quadratically with the size of the former and thus an efficient technique for parametrization is needed. We propose block neural autoregressive flow (B-NAF), a much more compact universal approximator of density functions, where we model a bijection directly using a single feed-forward network. Invertibility is ensured by carefully designing each affine transformation with block matrices that make the flow autoregressive and (strictly) monotone. We compare B-NAF to NAF and other established flows on density estimation and approximate inference for latent variable models. Our proposed flow is competitive across datasets while using orders of magnitude fewer parameters.Comment: 12 pages, 3 figures, 3 table

    Expressive Monotonic Neural Networks

    Full text link
    The monotonic dependence of the outputs of a neural network on some of its inputs is a crucial inductive bias in many scenarios where domain knowledge dictates such behavior. This is especially important for interpretability and fairness considerations. In a broader context, scenarios in which monotonicity is important can be found in finance, medicine, physics, and other disciplines. It is thus desirable to build neural network architectures that implement this inductive bias provably. In this work, we propose a weight-constrained architecture with a single residual connection to achieve exact monotonic dependence in any subset of the inputs. The weight constraint scheme directly controls the Lipschitz constant of the neural network and thus provides the additional benefit of robustness. Compared to currently existing techniques used for monotonicity, our method is simpler in implementation and in theory foundations, has negligible computational overhead, is guaranteed to produce monotonic dependence, and is highly expressive. We show how the algorithm is used to train powerful, robust, and interpretable discriminators that achieve competitive performance compared to current state-of-the-art methods across various benchmarks, from social applications to the classification of the decays of subatomic particles produced at the CERN Large Hadron Collider.Comment: 9 pages, 4 figures, ICLR 2023 final submissio
    corecore