920 research outputs found

    Improvement of BM3D Algorithm and Employment to Satellite and CFA Images Denoising

    Full text link
    This paper proposes a new procedure in order to improve the performance of block matching and 3-D filtering (BM3D) image denoising algorithm. It is demonstrated that it is possible to achieve a better performance than that of BM3D algorithm in a variety of noise levels. This method changes BM3D algorithm parameter values according to noise level, removes prefiltering, which is used in high noise level; therefore Peak Signal-to-Noise Ratio (PSNR) and visual quality get improved, and BM3D complexities and processing time are reduced. This improved BM3D algorithm is extended and used to denoise satellite and color filter array (CFA) images. Output results show that the performance has upgraded in comparison with current methods of denoising satellite and CFA images. In this regard this algorithm is compared with Adaptive PCA algorithm, that has led to superior performance for denoising CFA images, on the subject of PSNR and visual quality. Also the processing time has decreased significantly.Comment: 11 pages, 7 figur

    Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds

    Full text link
    Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with plain multi layer perceptrons (MLP) applied to image patches. We will show that by training on large image databases we are able to outperform the current state-of-the-art image denoising methods. In addition, our method achieves results that are superior to one type of theoretical bound and goes a large way toward closing the gap with a second type of theoretical bound. Our approach is easily adapted to less extensively studied types of noise, such as mixed Poisson-Gaussian noise, JPEG artifacts, salt-and-pepper noise and noise resembling stripes, for which we achieve excellent results as well. We will show that combining a block-matching procedure with MLPs can further improve the results on certain images. In a second paper, we detail the training trade-offs and the inner mechanisms of our MLPs

    Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

    Full text link
    A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.Comment: 30 page

    BM3D Frames and Variational Image Deblurring

    Full text link
    A family of the Block Matching 3-D (BM3D) algorithms for various imaging problems has been recently proposed within the framework of nonlocal patch-wise image modeling [1], [2]. In this paper we construct analysis and synthesis frames, formalizing the BM3D image modeling and use these frames to develop novel iterative deblurring algorithms. We consider two different formulations of the deblurring problem: one given by minimization of the single objective function and another based on the Nash equilibrium balance of two objective functions. The latter results in an algorithm where the denoising and deblurring operations are decoupled. The convergence of the developed algorithms is proved. Simulation experiments show that the decoupled algorithm derived from the Nash equilibrium formulation demonstrates the best numerical and visual results and shows superiority with respect to the state of the art in the field, confirming a valuable potential of BM3D-frames as an advanced image modeling tool.Comment: Submitted to IEEE Transactions on Image Processing on May 18, 2011. implementation of the proposed algorithm is available as part of the BM3D package at http://www.cs.tut.fi/~foi/GCF-BM3

    Nanoparticle shape and thermal radiation on Marangoni Water, Ethylene Glycol and Engine Oil Based Cu, Al2O3 and SWCNTs

    Get PDF
    The aim of this paper is to investigate the relationship between particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of water, ethylene glycol and engine oil based Cu, Al2O3 and SWCNTs. There are three types of nanoparticle shapes are considered in this research such as sphere, cylinder and lamina. The governing nonlinear partial differential equations are reduced into a set of nonlinear ordinary differential equations by applying similarity transformation which is solved using shooting technique in conjunction with Newton’s method and Runge Kutta algorithm. Temperature profiles are graphically and tabularly provided for the effects of solid volume fraction parameter, radiation parameter and empirical shape factor. The result shows that solid volume fraction and radiation energy gives a good impact on thermal boundary layer. Sphere nanoparticle shape predicts a better result on heat transfer rather than other nanoparticle shapes

    Enhanced CNN for image denoising

    Full text link
    Owing to flexible architectures of deep convolutional neural networks (CNNs), CNNs are successfully used for image denoising. However, they suffer from the following drawbacks: (i) deep network architecture is very difficult to train. (ii) Deeper networks face the challenge of performance saturation. In this study, the authors propose a novel method called enhanced convolutional neural denoising network (ECNDNet). Specifically, they use residual learning and batch normalisation techniques to address the problem of training difficulties and accelerate the convergence of the network. In addition, dilated convolutions are used in the proposed network to enlarge the context information and reduce the computational cost. Extensive experiments demonstrate that the ECNDNet outperforms the state-of-the-art methods for image denoising.Comment: CAAI Transactions on Intelligence Technology[J], 201
    corecore