527,049 research outputs found

    Multiple Description Coding of Discrete Ergodic Sources

    Get PDF
    We investigate the problem of Multiple Description (MD) coding of discrete ergodic processes. We introduce the notion of MD stationary coding, and characterize its relationship to the conventional block MD coding. In stationary coding, in addition to the two rate constraints normally considered in the MD problem, we consider another rate constraint which reflects the conditional entropy of the process generated by the third decoder given the reconstructions of the two other decoders. The relationship that we establish between stationary and block MD coding enables us to devise a universal algorithm for MD coding of discrete ergodic sources, based on simulated annealing ideas that were recently proven useful for the standard rate distortion problem.Comment: 6 pages, 3 figures, presented at 2009 Allerton Conference on Communication, Control and Computin

    An Achievable Rate Region for the Broadcast Channel with Feedback

    Full text link
    A single-letter achievable rate region is proposed for the two-receiver discrete memoryless broadcast channel with generalized feedback. The coding strategy involves block-Markov superposition coding, using Marton's coding scheme for the broadcast channel without feedback as the starting point. If the message rates in the Marton scheme are too high to be decoded at the end of a block, each receiver is left with a list of messages compatible with its output. Resolution information is sent in the following block to enable each receiver to resolve its list. The key observation is that the resolution information of the first receiver is correlated with that of the second. This correlated information is efficiently transmitted via joint source-channel coding, using ideas similar to the Han-Costa coding scheme. Using the result, we obtain an achievable rate region for the stochastically degraded AWGN broadcast channel with noisy feedback from only one receiver. It is shown that this region is strictly larger than the no-feedback capacity region.Comment: To appear in IEEE Transactions on Information Theory. Contains example of AWGN Broadcast Channel with noisy feedbac

    On the capacity of channels with block memory

    Get PDF
    The capacity of channels with block memory is investigated. It is shown that, when the problem is modeled as a game-theoretic problem, the optimum coding and noise distributions when block memory is permitted are independent from symbol to symbol within a block. Optimal jamming strategies are also independent from symbol to symbol within a block

    Performance of polar codes for quantum and private classical communication

    Get PDF
    We analyze the practical performance of quantum polar codes, by computing rigorous bounds on block error probability and by numerically simulating them. We evaluate our bounds for quantum erasure channels with coding block lengths between 2^10 and 2^20, and we report the results of simulations for quantum erasure channels, quantum depolarizing channels, and "BB84" channels with coding block lengths up to N = 1024. For quantum erasure channels, we observe that high quantum data rates can be achieved for block error rates less than 10^(-4) and that somewhat lower quantum data rates can be achieved for quantum depolarizing and BB84 channels. Our results here also serve as bounds for and simulations of private classical data transmission over these channels, essentially due to Renes' duality bounds for privacy amplification and classical data transmission of complementary observables. Future work might be able to improve upon our numerical results for quantum depolarizing and BB84 channels by employing a polar coding rule other than the heuristic used here.Comment: 8 pages, 6 figures, submission to the 50th Annual Allerton Conference on Communication, Control, and Computing 201

    Bilayer Protograph Codes for Half-Duplex Relay Channels

    Get PDF
    Despite encouraging advances in the design of relay codes, several important challenges remain. Many of the existing LDPC relay codes are tightly optimized for fixed channel conditions and not easily adapted without extensive re-optimization of the code. Some have high encoding complexity and some need long block lengths to approach capacity. This paper presents a high-performance protograph-based LDPC coding scheme for the half-duplex relay channel that addresses simultaneously several important issues: structured coding that permits easy design, low encoding complexity, embedded structure for convenient adaptation to various channel conditions, and performance close to capacity with a reasonable block length. The application of the coding structure to multi-relay networks is demonstrated. Finally, a simple new methodology for evaluating the end-to-end error performance of relay coding systems is developed and used to highlight the performance of the proposed codes.Comment: Accepted in IEEE Trans. Wireless Com

    フラクタル符号化特徴量を用いた類似画像検索およびオブジェクト検出手法の検討

    Get PDF
    Fractal image coding is a block-based scheme that exploits the self-similarity hiding with an image. Fractal codes are quantitative measurements of the self-similarity of the image, and collage error distribution of block characterizes the degree of self-similarity in it. Furthermore, fractal codes can be used to obtain a practical image indexing system because of its compactness and stability. The most important reason using fractal codes is able to deal with the images in compressed form. Thus fractal indexing is suitable for use with large database. In this study, we propose a new image retrieval system and object detection method based on fractal coding features that are collage error distribution and block partition structure in fractal codes. Experimental results show that the proposed method achieves a high precision tracking which is faster than MPEG method
    corecore