15,466 research outputs found

    Improved physiological noise regression in fNIRS: a multimodal extension of the General Linear Model using temporally embedded Canonical Correlation Analysis

    Get PDF
    For the robust estimation of evoked brain activity from functional Near-Infrared Spectroscopy (fNIRS) signals, it is crucial to reduce nuisance signals from systemic physiology and motion. The current best practice incorporates short-separation (SS) fNIRS measurements as regressors in a General Linear Model (GLM). However, several challenging signal characteristics such as non-instantaneous and non-constant coupling are not yet addressed by this approach and additional auxiliary signals are not optimally exploited. We have recently introduced a new methodological framework for the unsupervised multivariate analysis of fNIRS signals using Blind Source Separation (BSS) methods. Building onto the framework, in this manuscript we show how to incorporate the advantages of regularized temporally embedded Canonical Correlation Analysis (tCCA) into the supervised GLM. This approach allows flexible integration of any number of auxiliary modalities and signals. We provide guidance for the selection of optimal parameters and auxiliary signals for the proposed GLM extension. Its performance in the recovery of evoked HRFs is then evaluated using both simulated ground truth data and real experimental data and compared with the GLM with short-separation regression. Our results show that the GLM with tCCA significantly improves upon the current best practice, yielding significantly better results across all applied metrics: Correlation (HbO max. +45%), Root Mean Squared Error (HbO max. -55%), F-Score (HbO up to 3.25-fold) and p-value as well as power spectral density of the noise floor. The proposed method can be incorporated into the GLM in an easily applicable way that flexibly combines any available auxiliary signals into optimal nuisance regressors. This work has potential significance both for conventional neuroscientific fNIRS experiments as well as for emerging applications of fNIRS in everyday environments, medicine and BCI, where high Contrast to Noise Ratio is of importance for single trial analysis.Published versio

    APHONIC: Adaptive thresholding for noise cancellation in smart mobile environments

    Get PDF
    We propose a signal-channel, adaptive threshold selection technique for binary mask construction, namely APHONIC, (AdaPtive tHreshOlding for NoIse Cancellation) for smart mobile environments. Using this mask, we introduce two noise cancellation techniques that perform robustly in the presence of real-world interfering signals that are typically encountered by mobile users: a violin busker, a subway and busy city square sounds. We demonstrate that when the power of the time-frequency components of the voice of a mobile user does not significantly overlap with the components of the interference signal, the threshold learning and noise cancellation techniques significantly improve the Signal-to-Interference Ratio (SIR) and the Signal-Distortion Ratio (SDR) of the recovered voice. When a mobile user\u27s speech is mixed with music or with the sounds of a city square, or subway station, the speech energy is captured by a few large magnitude coefficients and APHONIC improves the SIR by greater than 20dB and the SDR by up to 5dB. The robustness of the threshold selection step and the noise cancellation algorithms is evaluated using environments typically experienced by mobile phone users. Listening tests indicate that the interference signal is no longer audible in the denoised signals. We outline how this approach could be used in many mobile voice-driven applications

    Microphone array signal processing for robot audition

    Get PDF
    Robot audition for humanoid robots interacting naturally with humans in an unconstrained real-world environment is a hitherto unsolved challenge. The recorded microphone signals are usually distorted by background and interfering noise sources (speakers) as well as room reverberation. In addition, the movements of a robot and its actuators cause ego-noise which degrades the recorded signals significantly. The movement of the robot body and its head also complicates the detection and tracking of the desired, possibly moving, sound sources of interest. This paper presents an overview of the concepts in microphone array processing for robot audition and some recent achievements
    corecore