1,747 research outputs found

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Model Order Selection for Collision Multiplicity Estimation

    Get PDF
    The collision multiplicity (CM) is the number of users involved in a collision. The CM estimation is an essential step in multi-packet reception (MPR) techniques and in collision resolution (CR) methods. We propose two techniques to estimate collision multiplicities in the context of IEEE 802.11 networks. These two techniques have been initially designed in the context of source separation. The first estimation technique is based on eigenvalue statistics. The second technique is based on the exponentially embedded family (EEF). These two techniques outperform current estimation techniques in terms of underestimation rate (UNDER). The reason for this is twofold. First, current techniques are based on a uniform distribution of signal samples whereas the proposed methods rely on a Gaussian distribution. Second, current techniques use a small number of observations whereas the proposed methods use a number of observations much greater than the number of signals to be separated. This is in accordance with typical source separation techniques

    Estimation of Collision Multiplicities in IEEE 802.11-based WLANs

    Get PDF
    Abstract—Estimating the collision multiplicity (CM), i.e. the number of users involved in a collision, is a key task in multipacket reception (MPR) approaches and in collision resolution (CR) techniques. A new technique is proposed for IEEE 802.11 networks. The technique is based on recent advances in random matrix theory and rely on eigenvalue statistics. Provided that the eigenvalues of the covariance matrix of the observations are above a given threshold, signal eigenvalues can be separated from noise eigenvalues since their respective probability density functions are converging toward two different laws: a Gaussian law for the signal eigenvalues and a Tracy-Widom law for the noise eigenvalues. The proposed technique outperforms current estimation techniques in terms of underestimation rate. Moreover, this paper reveals that, contrary to what is generally assumed in current MPR techniques, a single observation of the colliding signals is far from being sufficient to perform a reliable CM estimation

    Iterative Joint Channel Estimation and Multi-User Detection for Multiple-Antenna Aided OFDM Systems

    No full text
    Multiple-Input-Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems have recently attracted substantial research interest. However, compared to Single-Input-Single-Output (SISO) systems, channel estimation in the MIMO scenario becomes more challenging, owing to the increased number of independent transmitter-receiver links to be estimated. In the context of the Bell LAyered Space-Time architecture (BLAST) or Space Division Multiple Access (SDMA) multi-user MIMO OFDM systems, none of the known channel estimation techniques allows the number of users to be higher than the number of receiver antennas, which is often referred to as a “rank-deficient” scenario, owing to the constraint imposed by the rank of the MIMO channel matrix. Against this background, in this paper we propose a new Genetic Algorithm (GA) assisted iterative Joint Channel Estimation and Multi-User Detection (GA-JCEMUD) approach for multi-user MIMO SDMA-OFDM systems, which provides an effective solution to the multi-user MIMO channel estimation problem in the above-mentioned rank-deficient scenario. Furthermore, the GAs invoked in the data detection literature can only provide a hard-decision output for the Forward Error Correction (FEC) or channel decoder, which inevitably limits the system’s achievable performance. By contrast, our proposed GA is capable of providing “soft” outputs and hence it becomes capable of achieving an improved performance with the aid of FEC decoders. A range of simulation results are provided to demonstrate the superiority of the proposed scheme. Index Terms—Channel estimation, genetic algorithm, multiple-input-multiple-output, multi-user detection, orthogonal frequency division multiplexing, space division multiple access

    Random Matrix Theory applied to the Estimation of Collision Multiplicities

    Get PDF
    This paper presents two techniques in order to estimate the collision multiplicity, i.e., the number of users involved in a collision [1]. This estimation step is a key task in multi-packet reception approaches and in collision resolution techniques. The two techniques are proposed for IEEE 802.11 networks but they can be used in any OFDM-based system. The techniques are based on recent advances in random matrix theory and rely on eigenvalue statistics. Provided that the eigenvalues of the covariance matrix of the observations are above a given threshold, signal eigenvalues can be separated from noise eigenvalues since their respective probability density functions are converging toward two different laws: a Gaussian law for the signal eigenvalues and a Tracy-Widom law for the noise eigenvalues. The first technique has been designed for the white noise case, and the second technique has been designed for the colored noise case. The proposed techniques outperform current estimation techniques in terms of mean square error. Moreover, this paper reveals that, contrary to what is generally assumed in current multi-packet reception techniques, a single observation of the colliding signals is far from being sufficient to perform a reliable estimation of the collision multiplicities

    Space-time processing for wireless mobile communications

    Get PDF
    Intersymbol interference (ISI) and co-channel interference (CCI) are two major obstacles to high speed data transmission in wireless cellular communications systems. Unlike thermal noise, their effects cannot be removed by increasing the signal power and are time-varying due to the relative motion between the transmitters and receivers. Space-time processing offers a signal processing framework to optimally integrate the spatial and temporal properties of the signal for maximal signal reception and at the same time, mitigate the ISI and CCI impairments. In this thesis, we focus on the development of this emerging technology to combat the undesirable effects of ISI and CCL We first develop a convenient mathematical model to parameterize the space-time multipath channel based on signal path power, directions and times of arrival. Starting from the continuous time-domain, we derive compact expressions of the vector space-time channel model that lead to the notion of block space-time manifold, Under certain identifiability conditions, the noiseless vector-channel outputs will lie on a subspace constructed from a set. of basis belonging to the block space-time manifold. This is an important observation as many high resolution array processing algorithms Can be applied directly to estimate the multi path channel parameters. Next we focus on the development of semi-blind channel identification and equalization algorithms for fast time-varying multi path channels. Specifically. we develop space-time processing algorithms for wireless TDMA networks that use short burst data formats with extremely short training data. sequences. Due to the latter, the estimated channel parameters are extremely unreliable for equalization with conventional adaptive methods. We approach the channel acquisition, tracking and equalization problems jointly, and exploit the richness of the inherent structural relationship between the channel parameters and the data sequence by repeated use of available data through a forward- backward optimization procedure. This enables the fuller exploitation of the available data. Our simulation studies show that significant performance gains are achieved over conventional methods. In the final part of this thesis, we address the problem identifying and equalizing multi path communication channels in the presence of strong CCl. By considering CCI as stochasic processes, we find that temporal diversity can be gained by observing the channel outputs from a tapped delay line. Together with the assertion that the finite alphabet property of the information sequences can offer additional information about the channel parameters and the noise-plus-covariance matrix, we develop a spatial temporal algorithm, iterative reweighting alternating minimization, to estimate the channel parameters and information sequence in a weighted least squares framework. The proposed algorithm is robust as it does not require knowledge of the number of CCI nor their structural information. Simulation studies demonstrate its efficacy over many reported methods
    corecore