9,551 research outputs found

    No-reference Image Denoising Quality Assessment

    Get PDF
    A wide variety of image denoising methods are available now. However, the performance of a denoising algorithm often depends on individual input noisy images as well as its parameter setting. In this paper, we present a no-reference image denoising quality assessment method that can be used to select for an input noisy image the right denoising algorithm with the optimal parameter setting. This is a challenging task as no ground truth is available. This paper presents a data-driven approach to learn to predict image denoising quality. Our method is based on the observation that while individual existing quality metrics and denoising models alone cannot robustly rank denoising results, they often complement each other. We accordingly design denoising quality features based on these existing metrics and models and then use Random Forests Regression to aggregate them into a more powerful unified metric. Our experiments on images with various types and levels of noise show that our no-reference denoising quality assessment method significantly outperforms the state-of-the-art quality metrics. This paper also provides a method that leverages our quality assessment method to automatically tune the parameter settings of a denoising algorithm for an input noisy image to produce an optimal denoising result.Comment: 17 pages, 41 figures, accepted by Computer Vision Conference (CVC) 201

    Blind assessment for stereo images considering binocular characteristics and deep perception map based on deep belief network

    Get PDF
    © 2018 Elsevier Inc. In recent years, blind image quality assessment in the field of 2D image/video has gained the popularity, but its applications in 3D image/video are to be generalized. In this paper, we propose an effective blind metric evaluating stereo images via deep belief network (DBN). This method is based on wavelet transform with both 2D features from monocular images respectively as image content description and 3D features from a novel depth perception map (DPM) as depth perception description. In particular, the DPM is introduced to quantify longitudinal depth information to align with human stereo visual perception. More specifically, the 2D features are local histogram of oriented gradient (HoG) features from high frequency wavelet coefficients and global statistical features including magnitude, variance and entropy. Meanwhile, the global statistical features from the DPM are characterized as 3D features. Subsequently, considering binocular characteristics, an effective binocular weight model based on multiscale energy estimation of the left and right images is adopted to obtain the content quality. In the training and testing stages, three DBN models for the three types features separately are used to get the final score. Experimental results demonstrate that the proposed stereo image quality evaluation model has high superiority over existing methods and achieve higher consistency with subjective quality assessments

    How is Gaze Influenced by Image Transformations? Dataset and Model

    Full text link
    Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time consuming and expensive. Most of current studies on human attention and saliency modeling have used high quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial network (dubbed GazeGAN). A modified UNet is proposed as the generator of the GazeGAN, which combines classic skip connections with a novel center-surround connection (CSC), in order to leverage multi level features. We also propose a histogram loss based on Alternative Chi Square Distance (ACS HistLoss) to refine the saliency map in terms of luminance distribution. Extensive experiments and comparisons over 3 datasets indicate that GazeGAN achieves the best performance in terms of popular saliency evaluation metrics, and is more robust to various perturbations. Our code and data are available at: https://github.com/CZHQuality/Sal-CFS-GAN
    corecore