571 research outputs found

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Blind Estimation of Multiple Carrier Frequency Offsets

    Full text link
    Multiple carrier-frequency offsets (CFO) arise in a distributed antenna system, where data are transmitted simultaneously from multiple antennas. In such systems the received signal contains multiple CFOs due to mismatch between the local oscillators of transmitters and receiver. This results in a time-varying rotation of the data constellation, which needs to be compensated for at the receiver before symbol recovery. This paper proposes a new approach for blind CFO estimation and symbol recovery. The received base-band signal is over-sampled, and its polyphase components are used to formulate a virtual Multiple-Input Multiple-Output (MIMO) problem. By applying blind MIMO system estimation techniques, the system response is estimated and used to subsequently transform the multiple CFOs estimation problem into many independent single CFO estimation problems. Furthermore, an initial estimate of the CFO is obtained from the phase of the MIMO system response. The Cramer-Rao Lower bound is also derived, and the large sample performance of the proposed estimator is compared to the bound.Comment: To appear in the Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Athens, Greece, September 3-7, 200

    Performance Evaluation of a Hybrid Fractional Carrier Frequency Offset Estimator in OFDM

    Get PDF
    The major drawback of the orthogonal frequency division multiplexing (OFDM) system is high sensitivity to synchronization errors caused by carrier frequency offsets (CFOs), which result in degradation in the bit error rate (BER) performance. This paper investigates the performance of a hybrid fractional carrier frequency offset estimator (FCFOE) for frequency synchronization in the OFDM system. The hybrid FCFOE exploits the pilots inserted within the OFDM symbol for channel estimation together with the information inherent in the cyclic prefix (CP), with a view to improving the estimation of the CP-based FCFOE. The performance of the developed hybrid FCFOE was evaluated in terms of the mean squared error (MSE) and bit error rate (BER) using OFDM-QPSK and OFDM-16QAM schemes it turn. The simulation results show that the hybrid FCFOE only gives slightly better performance over the CP-based FCFOE; but the performance enhancement of the hybrid FCFOE is noticeable in OFDM-16QAM. Keywords: Carrier frequency offset estimation, Hybrid, Orthogonal frequency division multiplexing, Synchronization, Maximum likelihood, Cross-correlation
    • …
    corecore