1,369 research outputs found

    Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments

    Full text link
    We propose a spatial diffuseness feature for deep neural network (DNN)-based automatic speech recognition to improve recognition accuracy in reverberant and noisy environments. The feature is computed in real-time from multiple microphone signals without requiring knowledge or estimation of the direction of arrival, and represents the relative amount of diffuse noise in each time and frequency bin. It is shown that using the diffuseness feature as an additional input to a DNN-based acoustic model leads to a reduced word error rate for the REVERB challenge corpus, both compared to logmelspec features extracted from noisy signals, and features enhanced by spectral subtraction.Comment: accepted for ICASSP201

    Blind MultiChannel Identification and Equalization for Dereverberation and Noise Reduction based on Convolutive Transfer Function

    Get PDF
    This paper addresses the problems of blind channel identification and multichannel equalization for speech dereverberation and noise reduction. The time-domain cross-relation method is not suitable for blind room impulse response identification, due to the near-common zeros of the long impulse responses. We extend the cross-relation method to the short-time Fourier transform (STFT) domain, in which the time-domain impulse responses are approximately represented by the convolutive transfer functions (CTFs) with much less coefficients. The CTFs suffer from the common zeros caused by the oversampled STFT. We propose to identify CTFs based on the STFT with the oversampled signals and the critical sampled CTFs, which is a good compromise between the frequency aliasing of the signals and the common zeros problem of CTFs. In addition, a normalization of the CTFs is proposed to remove the gain ambiguity across sub-bands. In the STFT domain, the identified CTFs is used for multichannel equalization, in which the sparsity of speech signals is exploited. We propose to perform inverse filtering by minimizing the â„“1\ell_1-norm of the source signal with the relaxed â„“2\ell_2-norm fitting error between the micophone signals and the convolution of the estimated source signal and the CTFs used as a constraint. This method is advantageous in that the noise can be reduced by relaxing the â„“2\ell_2-norm to a tolerance corresponding to the noise power, and the tolerance can be automatically set. The experiments confirm the efficiency of the proposed method even under conditions with high reverberation levels and intense noise.Comment: 13 pages, 5 figures, 5 table

    Estimation of room acoustic parameters: the ACE challenge

    No full text
    Reverberation Time (T60) and Direct-to-Reverberant Ratio (DRR) are important parameters which together can characterize sound captured by microphones in non-anechoic rooms. These parameters are important in speech processing applications such as speech recognition and dereverberation. The values of T60 and DRR can be estimated directly from the Acoustic Impulse Response (AIR) of the room. In practice, the AIR is not normally available, in which case these parameters must be estimated blindly from the observed speech in the microphone signal. The Acoustic Characterization of Environments (ACE) Challenge aimed to determine the state-of-the-art in blind acoustic parameter estimation and also to stimulate research in this area. A summary of the ACE Challenge, and the corpus used in the challenge is presented together with an analysis of the results. Existing algorithms were submitted alongside novel contributions, the comparative results for which are presented in this paper. The challenge showed that T60 estimation is a mature field where analytical approaches dominate whilst DRR estimation is a less mature field where machine learning approaches are currently more successful

    Early adductive reasoning for blind signal separation

    Full text link
    We demonstrate that explicit and systematic incorporation of abductive reasoning capabilities into algorithms for blind signal separation can yield significant performance improvements. Our formulated mechanisms apply to the output data of signal processing modules in order to conjecture the structure of time-frequency interactions between the signal components that are to be separated. The conjectured interactions are used to drive subsequent signal separation processes that are as a result less blind to the interacting signal components and, therefore, more effective. We refer to this type of process as early abductive reasoning (EAR); the “early” refers to the fact that in contrast to classical Artificial Intelligence paradigms, the reasoning process here is utilized before the signal processing transformations are completed. We have used our EAR approach to formulate a practical algorithm that is more effective in realistically noisy conditions than reference algorithms that are representative of the current state of the art in two-speaker pitch tracking. Our algorithm uses the Blackboard architecture from Artificial Intelligence to control EAR and advanced signal processing modules. The algorithm has been implemented in MATLAB and successfully tested on a database of 570 mixture signals representing simultaneous speakers in a variety of real-world, noisy environments. With 0 dB Target-to-Masking Ratio (TMR) and no noise, the Gross Error Rate (GER) for our algorithm is 5% in comparison to the best GER performance of 11% among the reference algorithms. In diffuse noisy environments (such as street or restaurant environments), we find that our algorithm on the average outperforms the best reference algorithm by 9.4%. With directional noise, our algorithm also outperforms the best reference algorithm by 29%. The extracted pitch tracks from our algorithm were also used to carry out comb filtering for separating the harmonics of the two speakers from each other and from the other sound sources in the environment. The separated signals were evaluated subjectively by a set of 20 listeners to be of reasonable quality
    • …
    corecore