3,375 research outputs found

    16x125 Gb/s Quasi-Nyquist DAC-Generated PM-16QAM Transmission Over 3590 km of PSCF

    Get PDF
    We report on a transmission experiment over high-performance pure silica core fiber (PSCF) of 16 Nyquist wavelength-division-multiplexed (Nyquist-WDM) channels at a symbol rate of 15.625 GBaud, using polarization-multiplexed (PM) 16 symbols quadrature amplitude modulation (16QAM), resulting in a per-channel raw bit rate of 125 Gb/s. The channel spacing is 16 GHz, corresponding to 1.024 times the symbol rate. The interchannel crosstalk penalty is drastically reduced through the confinement of the signal spectrum within a near-Nyquist bandwidth, achieved with digital filtering and digital-to-analog converters (DACs) operating at 1.5 samples/symbol. The optical line is a recirculating loop composed of two spans of high-performance PSCF with erbium-doped fiber amplifiers only. The transmission distance of 3590 km at a target line bit-error rate (BER) of 1.5 10^-2 is achieved at a raw spectral efficiency (SE) of 7.81 b/s/Hz. Assuming a commercial hard forward error correction with 20.5% redundancy, capable of handling the target BER, the net SE is 6.48 b/s/Hz, the highest so far reported for multithousand kilometer transmission of PM-16QAM at ≥ 100 Gb/s per channel. These results demonstrate the feasibility of very high SE DAC-enabled ultra-long-haul quasi-Nyquist-WDM transmission using PM-16QAM with current technologies and manageable digital signal processing complexit

    Enhanced Wireless Access Technologies and Experiments for W-CDMA Communications

    Get PDF
    This article reviews enhanced wireless access technologies and experimental evaluations of the wideband DS-CDMA physical layer employing intercell asynchronous operation with a three-step fast cell search method, pilot symbol-assisted coherent links, signal-to-interference plus background noise power ratio-based fast transmit power control, site diversity (soft/softer handover), and transmit diversity in the forward link. The article also presents link-capacity-enhancing techniques such as using an interference canceller and adaptive antenna array diversity receiver/transmitter, and experimental results in a real multipath fading channel. The laboratory and field experiments exemplify superior techniques of the W-CDMA physical layer and the potential of the IC and AAAD transceiver to decrease the mobile transmit power in the reverse link and multipath interference from high-rate users with large transmit power in the forward link
    corecore