5,515 research outputs found

    Semi-blind adaptive spatial equalisation for MIMO systems with high-order QAM signalling

    No full text
    This contribution investigates semi-blind adaptive spatial filtering or equalisation for multiple-input multiple-output (MIMO) systems that employ high-throughput quadrature amplitude modulation (QAM) signalling. A minimum number of training symbols, equal to the number of receivers (we assume that the number of transmitters is no more than that of receivers), are first utilized to provide a rough least squares channel estimate of the system's MIMO channel matrix for the initialization of the spatial equalizers' weight vectors. A constant modulus algorithm aided soft decision-directed blind algorithm, originally derived for blind equalization of single-input single-output and single-input multiple-output systems employing high-order QAM signalling, is then extended to adapt the spatial equalizers for MIMO systems. This semi-blind scheme has a low computational complexity, and our simulation results demonstrate that it converges fast to the minimum mean-square-error spatial equalization solution

    Blind joint maximum likelihood channel estimation and data detection for single-input multiple-output systems

    No full text
    A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of single-input multiple-output (SIMO) systems. The joint ML optimization of the channel and data estimation is decomposed into an iterative optimization loop. An efficient global optimization algorithm termed as the repeated weighted boosting aided search is employed first to identify the unknown SIMO channel model, and then the Viterbi algorithm is used for the maximum likelihood sequence estimation of the unknown data sequence. A simulation example is used for demonstrating the efficiency of this joint ML optimization scheme designed for blind adaptive SIMO systems

    Low-complexity blind maximum-likelihood detection for SIMO systems with general constellations

    Get PDF
    The demand for high data rate reliable communications poses great challenges to the next generation wireless systems in highly dynamic mobile environments. In this paper, we investigate the joint maximum-likelihood (ML) channel estimation and signal detection problem for single-input multiple-output (SIMO) wireless systems with general modulation constellations and propose an efficient sequential decoder for finding the exact joint ML solution. Unlike other known methods, the new decoder can even efficiently find the joint ML solution under high spectral efficiency non-constant- modulus modulation constellations. In particular, the new algorithm does not need such preprocessing steps as Cholesky or QR decomposition in the traditional sphere decoders for joint ML channel estimation and data detection. The elimination of such preprocessing not only reduces the number of floating point computations, but also will potentially lead to smaller size and power consumption in VLSI implementations while providing better numerical stability

    Semi-blind adaptive beamforming for high-throughput quadrature amplitude modulation systems

    No full text
    A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver antenna arrays elements, are first utilised to provide a rough initial least squares estimate of the beamformer's weight vector. A concurrent constant modulus algorithm and soft decision-directed scheme is then applied to adapt the beamformer. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study

    Low Complexity Blind Equalization for OFDM Systems with General Constellations

    Get PDF
    This paper proposes a low-complexity algorithm for blind equalization of data in OFDM-based wireless systems with general constellations. The proposed algorithm is able to recover data even when the channel changes on a symbol-by-symbol basis, making it suitable for fast fading channels. The proposed algorithm does not require any statistical information of the channel and thus does not suffer from latency normally associated with blind methods. We also demonstrate how to reduce the complexity of the algorithm, which becomes especially low at high SNR. Specifically, we show that in the high SNR regime, the number of operations is of the order O(LN), where L is the cyclic prefix length and N is the total number of subcarriers. Simulation results confirm the favorable performance of our algorithm
    corecore