3,184 research outputs found

    MISEP - Linear and Nonlinear ICA Based on Mutual Information

    Get PDF
    MISEP is a method for linear and nonlinear ICA, that is able to handle a large variety of situations. It is an extension of the well known INFOMAX method, in two directions: (1) handling of nonlinear mixtures, and (2) learning the nonlinearities to be used at the outputs. The method can therefore separate linear and nonlinear mixtures of components with a wide range of statistical distributions. This paper presents the basis of the MISEP method, as well as experimental results obtained with it. The results illustrate the applicability of the method to various situations, and show that, although the nonlinear blind separation problem is ill-posed, use of regularization allows the problem to be solved when the nonlinear mixture is relatively smooth

    Complex Random Vectors and ICA Models: Identifiability, Uniqueness and Separability

    Full text link
    In this paper the conditions for identifiability, separability and uniqueness of linear complex valued independent component analysis (ICA) models are established. These results extend the well-known conditions for solving real-valued ICA problems to complex-valued models. Relevant properties of complex random vectors are described in order to extend the Darmois-Skitovich theorem for complex-valued models. This theorem is used to construct a proof of a theorem for each of the above ICA model concepts. Both circular and noncircular complex random vectors are covered. Examples clarifying the above concepts are presented.Comment: To appear in IEEE TR-IT March 200

    Reverberant Audio Source Separation via Sparse and Low-Rank Modeling

    Get PDF
    The performance of audio source separation from underdetermined convolutive mixture assuming known mixing filters can be significantly improved by using an analysis sparse prior optimized by a reweighting l1 scheme and a wideband datafidelity term, as demonstrated by a recent article. In this letter, we show that the performance can be improved even more significantly by exploiting a low-rank prior on the source spectrograms.We present a new algorithm to estimate the sources based on i) an analysis sparse prior, ii) a reweighting scheme so as to increase the sparsity, iii) a wideband data-fidelity term in a constrained form, and iv) a low-rank constraint on the source spectrograms. Evaluation on reverberant music mixtures shows that the resulting algorithm improves state-of-the-art methods by more than 2 dB of signal-to-distortion ratio
    • …
    corecore