333 research outputs found

    Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python Package

    Full text link
    Spectral pixels are often a mixture of the pure spectra of the materials, called endmembers, due to the low spatial resolution of hyperspectral sensors, double scattering, and intimate mixtures of materials in the scenes. Unmixing estimates the fractional abundances of the endmembers within the pixel. Depending on the prior knowledge of endmembers, linear unmixing can be divided into three main groups: supervised, semi-supervised, and unsupervised (blind) linear unmixing. Advances in Image processing and machine learning substantially affected unmixing. This paper provides an overview of advanced and conventional unmixing approaches. Additionally, we draw a critical comparison between advanced and conventional techniques from the three categories. We compare the performance of the unmixing techniques on three simulated and two real datasets. The experimental results reveal the advantages of different unmixing categories for different unmixing scenarios. Moreover, we provide an open-source Python-based package available at https://github.com/BehnoodRasti/HySUPP to reproduce the results

    Bidirectional recurrent imputation and abundance estimation of LULC classes with MODIS multispectral time series and geo-topographic and climatic data

    Full text link
    Remotely sensed data are dominated by mixed Land Use and Land Cover (LULC) types. Spectral unmixing (SU) is a key technique that disentangles mixed pixels into constituent LULC types and their abundance fractions. While existing studies on Deep Learning (DL) for SU typically focus on single time-step hyperspectral (HS) or multispectral (MS) data, our work pioneers SU using MODIS MS time series, addressing missing data with end-to-end DL models. Our approach enhances a Long-Short Term Memory (LSTM)-based model by incorporating geographic, topographic (geo-topographic), and climatic ancillary information. Notably, our method eliminates the need for explicit endmember extraction, instead learning the input-output relationship between mixed spectra and LULC abundances through supervised learning. Experimental results demonstrate that integrating spectral-temporal input data with geo-topographic and climatic information significantly improves the estimation of LULC abundances in mixed pixels. To facilitate this study, we curated a novel labeled dataset for Andalusia (Spain) with monthly MODIS multispectral time series at 460m resolution for 2013. Named Andalusia MultiSpectral MultiTemporal Unmixing (Andalusia-MSMTU), this dataset provides pixel-level annotations of LULC abundances along with ancillary information. The dataset (https://zenodo.org/records/7752348) and code (https://github.com/jrodriguezortega/MSMTU) are available to the public

    GAUSS: Guided Encoder-Decoder Architecture for Hyperspectral Unmixing with Spatial Smoothness

    Full text link
    In recent hyperspectral unmixing (HU) literature, the application of deep learning (DL) has become more prominent, especially with the autoencoder (AE) architecture. We propose a split architecture and use a pseudo-ground truth for abundances to guide the `unmixing network' (UN) optimization. Preceding the UN, an `approximation network' (AN) is proposed, which will improve the association between the centre pixel and its neighbourhood. Hence, it will accentuate spatial correlation in the abundances as its output is the input to the UN and the reference for the `mixing network' (MN). In the Guided Encoder-Decoder Architecture for Hyperspectral Unmixing with Spatial Smoothness (GAUSS), we proposed using one-hot encoded abundances as the pseudo-ground truth to guide the UN; computed using the k-means algorithm to exclude the use of prior HU methods. Furthermore, we release the single-layer constraint on MN by introducing the UN generated abundances in contrast to the standard AE for HU. Secondly, we experimented with two modifications on the pre-trained network using the GAUSS method. In GAUSSblind_\textit{blind}, we have concatenated the UN and the MN to back-propagate the reconstruction error gradients to the encoder. Then, in the GAUSSprime_\textit{prime}, abundance results of a signal processing (SP) method with reliable abundance results were used as the pseudo-ground truth with the GAUSS architecture. According to quantitative and graphical results for four experimental datasets, the three architectures either transcended or equated the performance of existing HU algorithms from both DL and SP domains.Comment: 16 pages, 6 figure

    Unsupervised Hyperspectral and Multispectral Images Fusion Based on the Cycle Consistency

    Full text link
    Hyperspectral images (HSI) with abundant spectral information reflected materials property usually perform low spatial resolution due to the hardware limits. Meanwhile, multispectral images (MSI), e.g., RGB images, have a high spatial resolution but deficient spectral signatures. Hyperspectral and multispectral image fusion can be cost-effective and efficient for acquiring both high spatial resolution and high spectral resolution images. Many of the conventional HSI and MSI fusion algorithms rely on known spatial degradation parameters, i.e., point spread function, spectral degradation parameters, spectral response function, or both of them. Another class of deep learning-based models relies on the ground truth of high spatial resolution HSI and needs large amounts of paired training images when working in a supervised manner. Both of these models are limited in practical fusion scenarios. In this paper, we propose an unsupervised HSI and MSI fusion model based on the cycle consistency, called CycFusion. The CycFusion learns the domain transformation between low spatial resolution HSI (LrHSI) and high spatial resolution MSI (HrMSI), and the desired high spatial resolution HSI (HrHSI) are considered to be intermediate feature maps in the transformation networks. The CycFusion can be trained with the objective functions of marginal matching in single transform and cycle consistency in double transforms. Moreover, the estimated PSF and SRF are embedded in the model as the pre-training weights, which further enhances the practicality of our proposed model. Experiments conducted on several datasets show that our proposed model outperforms all compared unsupervised fusion methods. The codes of this paper will be available at this address: https: //github.com/shuaikaishi/CycFusion for reproducibility
    • …
    corecore