5 research outputs found

    Modeling False Data Injection Attacks on Integrated Electricity-Gas Systems

    Full text link
    This work studies the modeling of false data injection attacks (FDIAs) on IEGSs. First, we introduce a static state estimation model and bad data detection method for IEGSs. Then, we develop FDIAs on IEGSs with complete network topology and parameter information. Next, we develop FDIAs on IEGSs when intruders have only local network topology and parameter information of an IEGS. Lastly, we explore FDIAs on IEGSs when intruders have only local network topology information of an IEGS.Comment: 13 page

    Blind False Data Attacks Against AC State Estimation Based on Geometric Approach in Smart Grid Communications

    No full text

    Comprehensive Survey and Taxonomies of False Injection Attacks in Smart Grid: Attack Models, Targets, and Impacts

    Full text link
    Smart Grid has rapidly transformed the centrally controlled power system into a massively interconnected cyber-physical system that benefits from the revolutions happening in the communications (e.g. 5G) and the growing proliferation of the Internet of Things devices (such as smart metres and intelligent electronic devices). While the convergence of a significant number of cyber-physical elements has enabled the Smart Grid to be far more efficient and competitive in addressing the growing global energy challenges, it has also introduced a large number of vulnerabilities culminating in violations of data availability, integrity, and confidentiality. Recently, false data injection (FDI) has become one of the most critical cyberattacks, and appears to be a focal point of interest for both research and industry. To this end, this paper presents a comprehensive review in the recent advances of the FDI attacks, with particular emphasis on 1) adversarial models, 2) attack targets, and 3) impacts in the Smart Grid infrastructure. This review paper aims to provide a thorough understanding of the incumbent threats affecting the entire spectrum of the Smart Grid. Related literature are analysed and compared in terms of their theoretical and practical implications to the Smart Grid cybersecurity. In conclusion, a range of technical limitations of existing false data attack research is identified, and a number of future research directions is recommended.Comment: Double-column of 24 pages, prepared based on IEEE Transaction articl

    Analysis of Moving Target Defense Against False Data Injection Attacks on Power Grid

    Full text link
    Recent studies have considered thwarting false data injection (FDI) attacks against state estimation in power grids by proactively perturbing branch susceptances. This approach is known as moving target defense (MTD). However, despite of the deployment of MTD, it is still possible for the attacker to launch stealthy FDI attacks generated with former branch susceptances. In this paper, we prove that, an MTD has the capability to thwart all FDI attacks constructed with former branch susceptances only if (i) the number of branches ll in the power system is not less than twice that of the system states nn (i.e., l≥2nl \geq 2n, where n+1n + 1 is the number of buses); (ii) the susceptances of more than nn branches, which cover all buses, are perturbed. Moreover, we prove that the state variable of a bus that is only connected by a single branch (no matter it is perturbed or not) can always be modified by the attacker. Nevertheless, in order to reduce the attack opportunities of potential attackers, we first exploit the impact of the susceptance perturbation magnitude on the dimension of the \emph{stealthy attack space}, in which the attack vector is constructed with former branch susceptances. Then, we propose that, by perturbing an appropriate set of branches, we can minimize the dimension of the \emph{stealthy attack space} and maximize the number of covered buses. Besides, we consider the increasing operation cost caused by the activation of MTD. Finally, we conduct extensive simulations to illustrate our findings with IEEE standard test power systems

    State of the art of cyber-physical systems security: An automatic control perspective

    Get PDF
    Cyber-physical systems are integrations of computation, networking, and physical processes. Due to the tight cyber-physical coupling and to the potentially disrupting consequences of failures, security here is one of the primary concerns. Our systematic mapping study sheds light on how security is actually addressed when dealing with cyber-physical systems from an automatic control perspective. The provided map of 138 selected studies is defined empirically and is based on, for instance, application fields, various system components, related algorithms and models, attacks characteristics and defense strategies. It presents a powerful comparison framework for existing and future research on this hot topic, important for both industry and academia
    corecore