4 research outputs found

    DeepOtsu: Document Enhancement and Binarization using Iterative Deep Learning

    Get PDF
    This paper presents a novel iterative deep learning framework and apply it for document enhancement and binarization. Unlike the traditional methods which predict the binary label of each pixel on the input image, we train the neural network to learn the degradations in document images and produce the uniform images of the degraded input images, which allows the network to refine the output iteratively. Two different iterative methods have been studied in this paper: recurrent refinement (RR) which uses the same trained neural network in each iteration for document enhancement and stacked refinement (SR) which uses a stack of different neural networks for iterative output refinement. Given the learned uniform and enhanced image, the binarization map can be easy to obtain by a global or local threshold. The experimental results on several public benchmark data sets show that our proposed methods provide a new clean version of the degraded image which is suitable for visualization and promising results of binarization using the global Otsu's threshold based on the enhanced images learned iteratively by the neural network.Comment: Accepted by Pattern Recognitio

    Image Enhancement for Scanned Historical Documents in the Presence of Multiple Degradations

    Get PDF
    Historical documents are treasured sources of information but typically suffer from problems with quality and degradation. Scanned images of historical documents suffer from difficulties due to paper quality and poor image capture, producing images with low contrast, smeared ink, bleed-through and uneven illumination. This PhD thesis proposes a novel adaptative histogram matching method to remove these artefacts from scanned images of historical documents. The adaptive histogram matching is modelled to create an ideal histogram by dividing the histogram using its Otsu level and applying Gaussian distributions to each segment with iterative output refinement applied to individual images. The pre-processing techniques of contrast stretching, wiener filtering, and bilateral filtering are used before the proposed adaptive histogram matching approach to maximise the dynamic range and reduce noise. The goal is to better represent document images and improve readability and the source images for Optical Character Recognition (OCR). Unlike other enhancement methods designed for single artefacts, the proposed method enhances multiple (low-contrast, smeared-ink, bleed-through and uneven illumination). In addition to developing an algorithm for historical document enhancement, the research also contributes a new dataset of scanned historical newspapers (an annotated subset of the Europeana Newspaper - ENP – dataset) where the enhancement technique is tested, which can also be used for further research. Experimental results show that the proposed method significantly reduces background noise and improves image quality on multiple artefacts compared to other enhancement methods. Several performance criteria are utilised to evaluate the proposed method’s efficiency. These include Signal to Noise Ratio (SNR), Mean opinion score (MOS), and visual document image quality assessment (VDIQA) metric called Visual Document Image Quality Assessment Metric (VDQAM). Additional assessment criteria to measure post-processing binarization quality are also discussed with enhanced results based on the Peak signal-to-noise ratio (PSNR), negative rate metric (NRM) and F-measure.Keywords: Image Enhancement, Historical Documents, OCR, Digitisation, Adaptive histogram matchin

    Blind bleed-through removal for scanned historical document image with conditional random fields

    No full text
    corecore