61 research outputs found

    The 2018 DAVIS Challenge on Video Object Segmentation

    Full text link
    We present the 2018 DAVIS Challenge on Video Object Segmentation, a public competition specifically designed for the task of video object segmentation. It builds upon the DAVIS 2017 dataset, which was presented in the previous edition of the DAVIS Challenge, and added 100 videos with multiple objects per sequence to the original DAVIS 2016 dataset. Motivated by the analysis of the results of the 2017 edition, the main track of the competition will be the same than in the previous edition (segmentation given the full mask of the objects in the first frame -- semi-supervised scenario). This edition, however, also adds an interactive segmentation teaser track, where the participants will interact with a web service simulating the input of a human that provides scribbles to iteratively improve the result.Comment: Challenge website: http://davischallenge.org

    RANet: Ranking Attention Network for Fast Video Object Segmentation

    Full text link
    Despite online learning (OL) techniques have boosted the performance of semi-supervised video object segmentation (VOS) methods, the huge time costs of OL greatly restrict their practicality. Matching based and propagation based methods run at a faster speed by avoiding OL techniques. However, they are limited by sub-optimal accuracy, due to mismatching and drifting problems. In this paper, we develop a real-time yet very accurate Ranking Attention Network (RANet) for VOS. Specifically, to integrate the insights of matching based and propagation based methods, we employ an encoder-decoder framework to learn pixel-level similarity and segmentation in an end-to-end manner. To better utilize the similarity maps, we propose a novel ranking attention module, which automatically ranks and selects these maps for fine-grained VOS performance. Experiments on DAVIS-16 and DAVIS-17 datasets show that our RANet achieves the best speed-accuracy trade-off, e.g., with 33 milliseconds per frame and J&F=85.5% on DAVIS-16. With OL, our RANet reaches J&F=87.1% on DAVIS-16, exceeding state-of-the-art VOS methods. The code can be found at https://github.com/Storife/RANet.Comment: Accepted by ICCV 2019. 10 pages, 7 figures, 6 tables. The supplementary file can be found at https://csjunxu.github.io/paper/2019ICCV/RANet_supp.pdf ; Code is available at https://github.com/Storife/RANe

    Video Object Segmentation using Space-Time Memory Networks

    Full text link
    We propose a novel solution for semi-supervised video object segmentation. By the nature of the problem, available cues (e.g. video frame(s) with object masks) become richer with the intermediate predictions. However, the existing methods are unable to fully exploit this rich source of information. We resolve the issue by leveraging memory networks and learn to read relevant information from all available sources. In our framework, the past frames with object masks form an external memory, and the current frame as the query is segmented using the mask information in the memory. Specifically, the query and the memory are densely matched in the feature space, covering all the space-time pixel locations in a feed-forward fashion. Contrast to the previous approaches, the abundant use of the guidance information allows us to better handle the challenges such as appearance changes and occlussions. We validate our method on the latest benchmark sets and achieved the state-of-the-art performance (overall score of 79.4 on Youtube-VOS val set, J of 88.7 and 79.2 on DAVIS 2016/2017 val set respectively) while having a fast runtime (0.16 second/frame on DAVIS 2016 val set).Comment: ICCV 201

    Improving Image co-segmentation via Deep Metric Learning

    Full text link
    Deep Metric Learning (DML) is helpful in computer vision tasks. In this paper, we firstly introduce DML into image co-segmentation. We propose a novel Triplet loss for Image Segmentation, called IS-Triplet loss for short, and combine it with traditional image segmentation loss. Different from the general DML task which learns the metric between pictures, we treat each pixel as a sample, and use their embedded features in high-dimensional space to form triples, then we tend to force the distance between pixels of different categories greater than of the same category by optimizing IS-Triplet loss so that the pixels from different categories are easier to be distinguished in the high-dimensional feature space. We further present an efficient triple sampling strategy to make a feasible computation of IS-Triplet loss. Finally, the IS-Triplet loss is combined with 3 traditional image segmentation losses to perform image segmentation. We apply the proposed approach to image co-segmentation and test it on the SBCoseg dataset and the Internet dataset. The experimental result shows that our approach can effectively improve the discrimination of pixels' categories in high-dimensional space and thus help traditional loss achieve better performance of image segmentation with fewer training epochs.Comment: 11 pages, 5 figure

    ScribbleBox: Interactive Annotation Framework for Video Object Segmentation

    Full text link
    Manually labeling video datasets for segmentation tasks is extremely time consuming. In this paper, we introduce ScribbleBox, a novel interactive framework for annotating object instances with masks in videos. In particular, we split annotation into two steps: annotating objects with tracked boxes, and labeling masks inside these tracks. We introduce automation and interaction in both steps. Box tracks are annotated efficiently by approximating the trajectory using a parametric curve with a small number of control points which the annotator can interactively correct. Our approach tolerates a modest amount of noise in the box placements, thus typically only a few clicks are needed to annotate tracked boxes to a sufficient accuracy. Segmentation masks are corrected via scribbles which are efficiently propagated through time. We show significant performance gains in annotation efficiency over past work. We show that our ScribbleBox approach reaches 88.92% J&F on DAVIS2017 with 9.14 clicks per box track, and 4 frames of scribble annotation

    Collaborative Video Object Segmentation by Foreground-Background Integration

    Full text link
    This paper investigates the principles of embedding learning to tackle the challenging semi-supervised video object segmentation. Different from previous practices that only explore the embedding learning using pixels from foreground object (s), we consider background should be equally treated and thus propose Collaborative video object segmentation by Foreground-Background Integration (CFBI) approach. Our CFBI implicitly imposes the feature embedding from the target foreground object and its corresponding background to be contrastive, promoting the segmentation results accordingly. With the feature embedding from both foreground and background, our CFBI performs the matching process between the reference and the predicted sequence from both pixel and instance levels, making the CFBI be robust to various object scales. We conduct extensive experiments on three popular benchmarks, i.e., DAVIS 2016, DAVIS 2017, and YouTube-VOS. Our CFBI achieves the performance (J$F) of 89.4%, 81.9%, and 81.4%, respectively, outperforming all the other state-of-the-art methods. Code: https://github.com/z-x-yang/CFBI.Comment: ECCV 2020, Spotligh

    In defense of OSVOS

    Full text link
    As a milestone for video object segmentation, one-shot video object segmentation (OSVOS) has achieved a large margin compared to the conventional optical-flow based methods regarding to the segmentation accuracy. Its excellent performance mainly benefit from the three-step training mechanism, that are: (1) acquiring object features on the base dataset (i.e. ImageNet), (2) training the parent network on the training set of the target dataset (i.e. DAVIS-2016) to be capable of differentiating the object of interest from the background. (3) online fine-tuning the interested object on the first frame of the target test set to overfit its appearance, then the model can be utilized to segment the same object in the rest frames of that video. In this paper, we argue that for the step (2), OSVOS has the limitation to 'overemphasize' the generic semantic object information while 'dilute' the instance cues of the object(s), which largely block the whole training process. Through adding a common module, video loss, which we formulate with various forms of constraints (including weighted BCE loss, high-dimensional triplet loss, as well as a novel mixed instance-aware video loss), to train the parent network in the step (2), the network is then better prepared for the step (3), i.e. online fine-tuning on the target instance. Through extensive experiments using different network structures as the backbone, we show that the proposed video loss module can improve the segmentation performance significantly, compared to that of OSVOS. Meanwhile, since video loss is a common module, it can be generalized to other fine-tuning based methods and similar vision tasks such as depth estimation and saliency detection

    Self-Supervised Visual Representation Learning from Hierarchical Grouping

    Full text link
    We create a framework for bootstrapping visual representation learning from a primitive visual grouping capability. We operationalize grouping via a contour detector that partitions an image into regions, followed by merging of those regions into a tree hierarchy. A small supervised dataset suffices for training this grouping primitive. Across a large unlabeled dataset, we apply this learned primitive to automatically predict hierarchical region structure. These predictions serve as guidance for self-supervised contrastive feature learning: we task a deep network with producing per-pixel embeddings whose pairwise distances respect the region hierarchy. Experiments demonstrate that our approach can serve as state-of-the-art generic pre-training, benefiting downstream tasks. We additionally explore applications to semantic region search and video-based object instance tracking.Comment: Accepted by NeurIPS 202

    Fast Pixel-Matching for Video Object Segmentation

    Full text link
    Video object segmentation, aiming to segment the foreground objects given the annotation of the first frame, has been attracting increasing attentions. Many state-of-the-art approaches have achieved great performance by relying on online model updating or mask-propagation techniques. However, most online models require high computational cost due to model fine-tuning during inference. Most mask-propagation based models are faster but with relatively low performance due to failure to adapt to object appearance variation. In this paper, we are aiming to design a new model to make a good balance between speed and performance. We propose a model, called NPMCA-net, which directly localizes foreground objects based on mask-propagation and non-local technique by matching pixels in reference and target frames. Since we bring in information of both first and previous frames, our network is robust to large object appearance variation, and can better adapt to occlusions. Extensive experiments show that our approach can achieve a new state-of-the-art performance with a fast speed at the same time (86.5% IoU on DAVIS-2016 and 72.2% IoU on DAVIS-2017, with speed of 0.11s per frame) under the same level comparison. Source code is available at https://github.com/siyueyu/NPMCA-net.Comment: Accepted by Signal Processing: Image Communicatio

    VideoMatch: Matching based Video Object Segmentation

    Full text link
    Video object segmentation is challenging yet important in a wide variety of applications for video analysis. Recent works formulate video object segmentation as a prediction task using deep nets to achieve appealing state-of-the-art performance. Due to the formulation as a prediction task, most of these methods require fine-tuning during test time, such that the deep nets memorize the appearance of the objects of interest in the given video. However, fine-tuning is time-consuming and computationally expensive, hence the algorithms are far from real time. To address this issue, we develop a novel matching based algorithm for video object segmentation. In contrast to memorization based classification techniques, the proposed approach learns to match extracted features to a provided template without memorizing the appearance of the objects. We validate the effectiveness and the robustness of the proposed method on the challenging DAVIS-16, DAVIS-17, Youtube-Objects and JumpCut datasets. Extensive results show that our method achieves comparable performance without fine-tuning and is much more favorable in terms of computational time.Comment: Accepted to ECCV 201
    • …
    corecore