141,605 research outputs found

    Dirty Black Holes and Hairy Black Holes

    Get PDF
    An approach based on considerations of the non-classical energy momentum tensor outside the event horizon of a black hole provides additional physical insight into the nature of discrete quantum hair on black holes and its effect on black hole temperature. Our analysis both extends previous work based on the Euclidean action techniques, and corrects an omission in that work. We also raise several issues related to the effects of instantons on black hole thermodynamics and the relation between these effects and results in two dimensional quantum field theory.Comment: 13 pages, Latex, submitted to Physical Review Letter

    The Role of Primordial Kicks on Black Hole Merger Rates

    Get PDF
    Primordial stars are likely to be very massive \geq30\Msun, form in isolation, and will likely leave black holes as remnants in the centers of their host dark matter halos in the mass range 10^{6}-10^{10}\Ms. Such early black holes, at redshifts z\gtsim10, could be the seed black holes for the many supermassive black holes found in galaxies in the local universe. If they exist, their mergers with nearby supermassive black holes may be a prime signal for long wavelength gravitational wave detectors. We simulate formation of black holes in the center of high redshift dark matter halos and explore implications of initial natal kick velocities conjectured by some formation models. The central concentration of early black holes in present day galaxies is reduced if they are born even with moderate kicks of tens of km/s. The modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the lower mass black holes as compared to those still embedded in their parent halos. Therefore, merger rates may be reduced by more than an order of magnitude. Using analytical and illustrative cosmological N--body simulations we quantify the role of natal kicks of black holes formed from massive metal free stars on their merger rates with supermassive black holes in present day galaxies. Our results also apply to black holes ejected by the gravitational slingshot mechanism.Comment: 12 pages, 9 figure

    Holographic complexity of Born-Infeld black holes

    Full text link
    In this paper, according to CA duality, we study complexity growth of Born-Infeld (BI) black holes. As a comparison, we study action growth of dyonic black holes in Einstein-Maxwell gravity at the beginning. We study action growth of electric BI black holes in dRGT massive gravity, and find BI black holes in massive gravity complexify faster than the Einstein gravity counterparts. We study action growth of the purely electric and magnetic Einstein-Born-Infeld (EBI) black holes in general dimensions and the dyonic EBI black holes in four-dimensions, and find the manners of action growth are different between electric and magnetic EBI black holes. In all the gravity systems we considered, we find action growth rates vanish for the purely magnetic black holes, which is unexpected. In order to ameliorate the situation, we add the boundary term of matter field to the action and discuss the outcomes of the addition.Comment: 26 pages, 6 figur

    Large rotating AdS black holes from fluid mechanics

    Full text link
    We use the AdS/CFT correspondence to argue that large rotating black holes in global AdS(D) spaces are dual to stationary solutions of the relativistic Navier-Stokes equations on S**(D-2). Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our fluid dynamical description applies to large non-extremal black holes as well as a class of large non-supersymmetric extremal black holes, but is never valid for supersymmetric black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, string theory on AdS(5) x S**5 and M theory on AdS(4) x S**7 and AdS(7) x S**4.Comment: 62 pages, 1 figure. v2: references, typo

    Phantom Energy Accretion onto Black Holes in Cyclic Universe

    Full text link
    Black holes pose a serious problem in the cyclic or oscillating cosmology. It is speculated that, in the cyclic universe with phantom turnarounds, black holes will be torn apart by the phantom energy before turnaround before they can create any problems. In this paper, using the mechanism of the phantom accretion onto black holes, we find that black holes do not disappear before the phantom turnaround. But the remanent black holes will not cause any problems due to the Hawking evaporation.Comment: 8 pages, no figure; typographical errors are correcte
    • …
    corecore