46 research outputs found

    Protocol for Multiple Black Hole Attack Avoidance in Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks (MANETs) form a new wireless networking paradigm with unique characteristics that give them appreciated interest in a vast range of applications. However, many challenges are facing MANETs including security, routing, transmission range, and dynamically changing topology with high node mobility. Security is considered as the main obstacle for the widespread adoption of MANET applications. Black hole attack is a type of DoS attack that can disrupt the services of the network layer. It has the worst malicious impact on network performance as the number of malicious nodes increases. Several mechanisms and protocols have been proposed to detect and mitigate its effects using different strategies. However, many of these solutions impose more overhead and increase the average end-to-end delay. This chapter proposes an enhanced and modified protocol called “Enhanced RID-AODV,” based on a preceding mechanism: RID-AODV. The proposed enhancement is based on creating dynamic blacklists for each node in the network. Each node, according to criteria, depends on the number of mismatches of hash values of received packets as compared with some threshold values, and the sudden change in the round-trip time (RTT) can decide to add or remove other nodes to or from its blacklist. The threshold is a function of mobility (variable threshold) to cancel the effect of normal link failure. Enhanced RID-AODV was implemented in ns-2 simulator and compared with three previous solutions for mitigating multiple black hole attacks in terms of performance metrics. The results show an increase in throughput and packet delivery ratio and a decrease in end-to-end delay and overhead ratio

    Dynamic Training Intrusion Detection Scheme for Blackhole Attack in MANETs

    Get PDF
    Mobile ad hoc network (MANET) is a self-configuring network which is composed of several movable mobile nodes. These mobile nodes communicate with each other without any infrastructure. As wireless ad hoc networks lack an infrastructure, they are exposed to a lot of attacks. This paper analyzes the blackhole attack which is one of the possible attacks in ad hoc networks. In a blackhole attack, a malicious node impersonates a destination node by sending a spoofed route reply packet to a source node that initiates a route discovery. By doing this, the malicious node can deprive the traffic from the source node. In order to prevent this kind of attack, it is crucial to detect the abnormality that occurs during the attack. In conventional schemes, anomaly detection is achieved by defining the normal state from static training data. However, in mobile ad hoc networks where the network topology dynamically changes, such static training method could not be used efficiently. In this paper, we propose an anomaly detection scheme using dynamic training method in which the training data is updated at regular time intervals. The simulation results show the effectiveness of our scheme compared with conventional scheme

    A Novel Technique to Detect and Isolate Multiple Black Hole Attack using Fake Destination ID

    Get PDF
    MANET is autonomous, decentralised, infrastructure less, cooperative & self-configurable network. It composed of continuously moving mobile nodes which deploy dynamic topologies. The mobile nodes in MANET can act as host as well as router. There are various protocols available for managing these mobile nodes which are formally categorised in proactive & reactive and hybrid protocols. As the network employs dynamic topology and no infrastructure, it is prone to so many security attacks viz. flooding, DoS, wormhole, grey hole, black hole, eavesdropping, jamming, man-in-the-middle, Sybil attacks etc. Among them black hole attack is most popular attack in which the attacker behave as black node and fool the source node that it has the shortest path available to the destination and thus prevents the packet reaching the destination. In this paper a new technique is proposed to detect and isolate black hole attack using fake route request packets. The simulation results show that the scheme is better than the previously described schemes in the terms of packet delay and throughput. DOI: 10.17762/ijritcc2321-8169.15033

    A survey on mitigation methods to Black hole Attack on AODV routing protocol

    Get PDF
    AODV is a routing protocol that is designed for MANETs and it is using the on-demand routing method to establish the routes between nodes. The main benefit of this protocol is establishment of desired routes to destination when the source node requires and it keeps the routes as long as they are needed. The black hole attack is a common attack that can be accrued in AODV protocols. In this kind of attack, the attacker uses of one or more malicious nodes which advertise themselves in the network by setting a zero metric to all the destinations that causes all the nodes toward the data packets to these malicious nodes. The AODV is vulnerable against black hole attacks due to having network centric property, where all the nodes have to share their routing tables for each other. In this paper, we present the survey of existing mitigation methods that have been proposed to secure AODV. Keywords: Mobile Ad hoc Network (MANET); Black hole attack; Cooperative Black hole attack; Ad-hoc On-demand Distance Vector (AODV)

    Innovative Technique to Detect and Prevent Malicious Nodes in AOMDV against Blackhole Attacks in MANET for Increase the Network Efficiency

    Get PDF
    The Ad hoc on-demand multipath distance vector (AOMDV) routing protocol is one type of reactive routing protocol used in MANET. It is designed on top of the AODV routing protocol, so it utilizes the features of the AODV protocol. The MANET is a wireless ad hoc network without any physical infrastructure; all nodes can be moved across the network, and connections are made between them as needed simply with the help of RREQ, RREP, and RERR packets. Because the network is dynamic, nodes can quickly join and depart anytime. So far, no security threats have been caused by this feature. The blackhole attack is one type of active and dangerous attack in MANET. In this attack, the attackers use the AOMDV flaw to demonstrate their bad intent, causing data loss and decreasing network performance. Many studies have been done on various detection and prevention methods to prevent blackhole attacks. But it still goes on. To improve network performance against black hole attacks, this study offers a dynamic threshold value with multiple paths technique approach on AOMDV; it will be demonstrated in Network Simulator 2

    Detection and Prevention of Blackhole Attack in the AOMDV Routing Protocol

    Get PDF
    Mobile ad-hoc network is a collection of dynamically organized nodes where each node acts as a host and router. Mobile ad-hoc networks are characterized by the lack of preexisting infrastructures or centralized administration. So, they are vulnerable to several types of attacks, especially the Blackhole attack. This attack is one of the most serious attacks in this kind of mobile networks. In this type of attack, the malicious node sends a false answer indicating that it has the shortest path to the destination node by increasing the sequence number and decreasing the number of hops. This will have a significant negative impact on source nodes which send their data packets through the malicious node to the destination. This malicious node drop received data packets and absorbs all network traffic. In order overcome this problem, securing routing protocols become a very important requirement in mobile ad-hoc networks. Multipath routing protocols are among the protocols affected by the Blackhole attack. In this paper, we propose an effective and efficient technique that avoids misbehavior of Blackhole nodes and facilitates the discovery for the most reliable paths for the secure transmission of data packets between communicating nodes in the well-known Ad hoc On-demand multi-path routing protocol (AOMDV). We implement and simulate our proposed technique using the ns 2.35 simulator. We also compared on how the three routing protocols AOMDV, AOMDV under Blackhole attack (BHAOMDV), and the proposed solution to counter the Blackhole attack (IDSAOMDV) performs. The results show the degradation on how AOMDV under attack performs, it also presents similarities between normal AOMDV and the proposed solution by isolating misbehaving node which has resulted in increase the performance metrics to the standard values of the AOMDV protocol
    corecore