6 research outputs found

    Bitsliced Implementations of the PRINCE, LED and RECTANGLE Block Ciphers on AVR 8-bit Microcontrollers

    Get PDF
    Due to the demand for low-cost cryptosystems from industry, there spring up a lot of lightweight block ciphers which are excellent for some different implementation features. An innovative design is the block cipher PRINCE. To meet the requirement for low-latency and instantaneously encryption, NXP Semiconductors and its academic partners cooperate and design the low-latency block cipher PRINCE. Another good example is the block cipher LED which is very compact in hardware, and whose designers also aim to maintain a reasonable software performance. In this paper, we demonstrate how to achieve high software performance of these two ciphers on the AVR 8-bit microcontrollers using bitslice technique. Our bitsliced implementations speed up the execution of these two ciphers several times with less memory usage than previous work. In addition to these two nibble-oriented ciphers, we also evaluate the software performance of a newly proposed lightweight block cipher RECTANGLE, whose design takes bitslicing into consider. Our results show that RECTANGLE has very high performance ranks among the existing block ciphers on 8-bit microcontrollers in the real-world usage scenarios

    On the Efficiency of Software Implementations of Lightweight Block Ciphers from the Perspective of Programming Languages

    Get PDF
    Lightweight block ciphers are primarily designed for resource constrained devices. However, due to service requirements of large-scale IoT networks and systems, the need for efficient software implementations can not be ruled out. A number of studies have compared software implementations of different lightweight block ciphers on a specific platform but to the best of our knowledge, this is the first attempt to benchmark various software implementations of a single lightweight block cipher across different programming languages and platforms in the cloud architecture. In this paper, we defined six lookup-table based software implementations for lightweight block ciphers with their characteristics ranging from memory to throughput optimized variants. We carried out a thorough analysis of the two costs associated with each implementation (memory and operations) and discussed possible trade-offs in detail. We coded all six types of implementations for three key settings (64, 80, 128 bits) of LED (a lightweight block cipher) in four programming languages (Java, C#, C++, Python). We highlighted the impact of choice relating to implementation type, programming language, and platform by benchmarking the seventy-two implementations for throughput and software efficiency on 32 & 64-bit platforms for two major operating systems (Windows & Linux) on Amazon Web Services Cloud. The results showed that these choices can affect the efficiency of a cryptographic primitive by a factor as high as 400

    State of the Art in Lightweight Symmetric Cryptography

    Get PDF
    Lightweight cryptography has been one of the ``hot topics'' in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a ``lightweight'' algorithm is usually designed to satisfy. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (\nist{}...) and international (\textsc{iso/iec}...) standards are listed. We then discuss some trends we identified in the design of lightweight algorithms, namely the designers' preference for \arx{}-based and bitsliced-S-Box-based designs and simple key schedules. Finally, we argue that lightweight cryptography is too large a field and that it should be split into two related but distinct areas: \emph{ultra-lightweight} and \emph{IoT} cryptography. The former deals only with the smallest of devices for which a lower security level may be justified by the very harsh design constraints. The latter corresponds to low-power embedded processors for which the \aes{} and modern hash function are costly but which have to provide a high level security due to their greater connectivity

    State of the Art in Lightweight Symmetric Cryptography

    Get PDF
    Lightweight cryptography has been one of the hot topics in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a lightweight algorithm is usually designed to satisfy in both the software and the hardware case. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (NIST...) and international (ISO/IEC...) standards are listed. We identified several trends in the design of lightweight algorithms, such as the designers\u27 preference for ARX-based and bitsliced-S-Box-based designs or simpler key schedules. We also discuss more general trade-offs facing the authors of such algorithms and suggest a clearer distinction between two subsets of lightweight cryptography. The first, ultra-lightweight cryptography, deals with primitives fulfilling a unique purpose while satisfying specific and narrow constraints. The second is ubiquitous cryptography and it encompasses more versatile algorithms both in terms of functionality and in terms of implementation trade-offs

    Cryptanalysis, Reverse-Engineering and Design of Symmetric Cryptographic Algorithms

    Get PDF
    In this thesis, I present the research I did with my co-authors on several aspects of symmetric cryptography from May 2013 to December 2016, that is, when I was a PhD student at the university of Luxembourg under the supervision of Alex Biryukov. My research has spanned three different areas of symmetric cryptography. In Part I of this thesis, I present my work on lightweight cryptography. This field of study investigates the cryptographic algorithms that are suitable for very constrained devices with little computing power such as RFID tags and small embedded processors such as those used in sensor networks. Many such algorithms have been proposed recently, as evidenced by the survey I co-authored on this topic. I present this survey along with attacks against three of those algorithms, namely GLUON, PRINCE and TWINE. I also introduce a new lightweight block cipher called SPARX which was designed using a new method to justify its security: the Long Trail Strategy. Part II is devoted to S-Box reverse-engineering, a field of study investigating the methods recovering the hidden structure or the design criteria used to build an S-Box. I co-invented several such methods: a statistical analysis of the differential and linear properties which was applied successfully to the S-Box of the NSA block cipher Skipjack, a structural attack against Feistel networks called the yoyo game and the TU-decomposition. This last technique allowed us to decompose the S-Box of the last Russian standard block cipher and hash function as well as the only known solution to the APN problem, a long-standing open question in mathematics. Finally, Part III presents a unifying view of several fields of symmetric cryptography by interpreting them as purposefully hard. Indeed, several cryptographic algorithms are designed so as to maximize the code size, RAM consumption or time taken by their implementations. By providing a unique framework describing all such design goals, we could design modes of operations for building any symmetric primitive with any form of hardness by combining secure cryptographic building blocks with simple functions with the desired form of hardness called plugs. Alex Biryukov and I also showed that it is possible to build plugs with an asymmetric hardness whereby the knowledge of a secret key allows the privileged user to bypass the hardness of the primitive

    Analyse et Conception d'Algorithmes de Chiffrement LĂ©gers

    Get PDF
    The work presented in this thesis has been completed as part of the FUI Paclido project, whose aim is to provide new security protocols and algorithms for the Internet of Things, and more specifically wireless sensor networks. As a result, this thesis investigates so-called lightweight authenticated encryption algorithms, which are designed to fit into the limited resources of constrained environments. The first main contribution focuses on the design of a lightweight cipher called Lilliput-AE, which is based on the extended generalized Feistel network (EGFN) structure and was submitted to the Lightweight Cryptography (LWC) standardization project initiated by NIST (National Institute of Standards and Technology). Another part of the work concerns theoretical attacks against existing solutions, including some candidates of the nist lwc standardization process. Therefore, some specific analyses of the Skinny and Spook algorithms are presented, along with a more general study of boomerang attacks against ciphers following a Feistel construction.Les travaux présentés dans cette thèse s’inscrivent dans le cadre du projet FUI Paclido, qui a pour but de définir de nouveaux protocoles et algorithmes de sécurité pour l’Internet des Objets, et plus particulièrement les réseaux de capteurs sans fil. Cette thèse s’intéresse donc aux algorithmes de chiffrements authentifiés dits à bas coût ou également, légers, pouvant être implémentés sur des systèmes très limités en ressources. Une première partie des contributions porte sur la conception de l’algorithme léger Lilliput-AE, basé sur un schéma de Feistel généralisé étendu (EGFN) et soumis au projet de standardisation international Lightweight Cryptography (LWC) organisé par le NIST (National Institute of Standards and Technology). Une autre partie des travaux se concentre sur des attaques théoriques menées contre des solutions déjà existantes, notamment un certain nombre de candidats à la compétition LWC du NIST. Elle présente donc des analyses spécifiques des algorithmes Skinny et Spook ainsi qu’une étude plus générale des attaques de type boomerang contre les schémas de Feistel
    corecore