2 research outputs found

    Intelligent Architectures for Intelligent Machines

    Full text link
    Computing is bottlenecked by data. Large amounts of application data overwhelm storage capability, communication capability, and computation capability of the modern machines we design today. As a result, many key applications' performance, efficiency and scalability are bottlenecked by data movement. In this keynote talk, we describe three major shortcomings of modern architectures in terms of 1) dealing with data, 2) taking advantage of the vast amounts of data, and 3) exploiting different semantic properties of application data. We argue that an intelligent architecture should be designed to handle data well. We show that handling data well requires designing architectures based on three key principles: 1) data-centric, 2) data-driven, 3) data-aware. We give several examples for how to exploit each of these principles to design a much more efficient and high performance computing system. We especially discuss recent research that aims to fundamentally reduce memory latency and energy, and practically enable computation close to data, with at least two promising novel directions: 1) performing massively-parallel bulk operations in memory by exploiting the analog operational properties of memory, with low-cost changes, 2) exploiting the logic layer in 3D-stacked memory technology in various ways to accelerate important data-intensive applications. We discuss how to enable adoption of such fundamentally more intelligent architectures, which we believe are key to efficiency, performance, and sustainability. We conclude with some guiding principles for future computing architecture and system designs.Comment: To appear in VLSI DAT/TSA 2020 conference proceedings as a plenary keynote pape

    A Survey of Machine Learning Applied to Computer Architecture Design

    Full text link
    Machine learning has enabled significant benefits in diverse fields, but, with a few exceptions, has had limited impact on computer architecture. Recent work, however, has explored broader applicability for design, optimization, and simulation. Notably, machine learning based strategies often surpass prior state-of-the-art analytical, heuristic, and human-expert approaches. This paper reviews machine learning applied system-wide to simulation and run-time optimization, and in many individual components, including memory systems, branch predictors, networks-on-chip, and GPUs. The paper further analyzes current practice to highlight useful design strategies and identify areas for future work, based on optimized implementation strategies, opportune extensions to existing work, and ambitious long term possibilities. Taken together, these strategies and techniques present a promising future for increasingly automated architectural design
    corecore