1,287 research outputs found

    Bit-level Optimized Neural Network for Multi-antenna Channel Quantization

    Get PDF
    Quantized channel state information (CSI) plays a critical role in precoding design which helps reap the merits of multiple-input multiple-output (MIMO) technology. In order to reduce the overhead of CSI feedback, we propose a deep learning based CSI quantization method by developing a joint convolutional residual network (JC-ResNet) which benefits MIMO channel feature extraction and recovery from the perspective of bit-level quantization performance. Experiments show that our proposed method substantially improves the performance

    Neural-Network Optimized 1-bit Precoding for Massive MU-MIMO

    Full text link
    Base station (BS) architectures for massive multi-user (MU) multiple-input multiple-output (MIMO) wireless systems are equipped with hundreds of antennas to serve tens of users on the same time-frequency channel. The immense number of BS antennas incurs high system costs, power, and interconnect bandwidth. To circumvent these obstacles, sophisticated MU precoding algorithms that enable the use of 1-bit DACs have been proposed. Many of these precoders feature parameters that are, traditionally, tuned manually to optimize their performance. We propose to use deep-learning tools to automatically tune such 1-bit precoders. Specifically, we optimize the biConvex 1-bit PrecOding (C2PO) algorithm using neural networks. Compared to the original C2PO algorithm, our neural-network optimized (NNO-)C2PO achieves the same error-rate performance at 2×\bf 2\boldsymbol\times lower complexity. Moreover, by training NNO-C2PO for different channel models, we show that 1-bit precoding can be made robust to vastly changing propagation conditions

    DL-based CSI Feedback and Cooperative Recovery in Massive MIMO

    Full text link
    In this paper, we exploit the correlation between nearby user equipment (UE) and develop a deep learning-based channel state information (CSI) feedback and cooperative recovery framework, CoCsiNet, to reduce the feedback overhead. The CSI information can be divided into two parts: shared by nearby UE and owned by individual UE. The key idea of exploiting the correlation is to reduce the overhead used to repeatedly feedback shared information. Unlike in the general autoencoder framework, an extra decoder and a combination network are added at the base station to recover the shared information from the feedback CSI of two nearby UE and combine the shared and individual information, respectively, but no modification is performed at the UEs. For a UE with multiple antennas, we also introduce a baseline neural network architecture with long short-term memory modules to extract the correlation of nearby antennas. Given that the CSI phase is not sparse, we propose two magnitude-dependent phase feedback strategies that introduce statistical and instant CSI magnitude information to the phase feedback process, respectively. Simulation results on two different channel datasets show the effectiveness of the proposed CoCsiNet.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Transformer-Empowered 6G Intelligent Networks: From Massive MIMO Processing to Semantic Communication

    Full text link
    It is anticipated that 6G wireless networks will accelerate the convergence of the physical and cyber worlds and enable a paradigm-shift in the way we deploy and exploit communication networks. Machine learning, in particular deep learning (DL), is expected to be one of the key technological enablers of 6G by offering a new paradigm for the design and optimization of networks with a high level of intelligence. In this article, we introduce an emerging DL architecture, known as the transformer, and discuss its potential impact on 6G network design. We first discuss the differences between the transformer and classical DL architectures, and emphasize the transformer's self-attention mechanism and strong representation capabilities, which make it particularly appealing for tackling various challenges in wireless network design. Specifically, we propose transformer-based solutions for various massive multiple-input multiple-output (MIMO) and semantic communication problems, and show their superiority compared to other architectures. Finally, we discuss key challenges and open issues in transformer-based solutions, and identify future research directions for their deployment in intelligent 6G networks.Comment: 9 pages, 6 figures. The current version has been accepted by IEEE Wireless Communications Magzin
    • …
    corecore