4,825 research outputs found

    Iterative Soft Input Soft Output Decoding of Reed-Solomon Codes by Adapting the Parity Check Matrix

    Full text link
    An iterative algorithm is presented for soft-input-soft-output (SISO) decoding of Reed-Solomon (RS) codes. The proposed iterative algorithm uses the sum product algorithm (SPA) in conjunction with a binary parity check matrix of the RS code. The novelty is in reducing a submatrix of the binary parity check matrix that corresponds to less reliable bits to a sparse nature before the SPA is applied at each iteration. The proposed algorithm can be geometrically interpreted as a two-stage gradient descent with an adaptive potential function. This adaptive procedure is crucial to the convergence behavior of the gradient descent algorithm and, therefore, significantly improves the performance. Simulation results show that the proposed decoding algorithm and its variations provide significant gain over hard decision decoding (HDD) and compare favorably with other popular soft decision decoding methods.Comment: 10 pages, 10 figures, final version accepted by IEEE Trans. on Information Theor

    A Method to determine Partial Weight Enumerator for Linear Block Codes

    Get PDF
    In this paper we present a fast and efficient method to find partial weight enumerator (PWE) for binary linear block codes by using the error impulse technique and Monte Carlo method. This PWE can be used to compute an upper bound of the error probability for the soft decision maximum likelihood decoder (MLD). As application of this method we give partial weight enumerators and analytical performances of the BCH(130,66), BCH(103,47) and BCH(111,55) shortened codes; the first code is obtained by shortening the binary primitive BCH (255,191,17) code and the two other codes are obtained by shortening the binary primitive BCH(127,71,19) code. The weight distributions of these three codes are unknown at our knowledge.Comment: Computer Engineering and Intelligent Systems Vol 3, No.11, 201

    Iterative decoding for MIMO channels via modified sphere decoding

    Get PDF
    In recent years, soft iterative decoding techniques have been shown to greatly improve the bit error rate performance of various communication systems. For multiantenna systems employing space-time codes, however, it is not clear what is the best way to obtain the soft information required of the iterative scheme with low complexity. In this paper, we propose a modification of the Fincke-Pohst (sphere decoding) algorithm to estimate the maximum a posteriori probability of the received symbol sequence. The new algorithm solves a nonlinear integer least squares problem and, over a wide range of rates and signal-to-noise ratios, has polynomial-time complexity. Performance of the algorithm, combined with convolutional, turbo, and low-density parity check codes, is demonstrated on several multiantenna channels. The results for systems that employ space-time modulation schemes seem to indicate that the best performing schemes are those that support the highest mutual information between the transmitted and received signals, rather than the best diversity gain

    An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Full text link
    The error pattern correcting code (EPCC) can be constructed to provide a syndrome decoding table targeting the dominant error events of an inter-symbol interference channel at the output of the Viterbi detector. For the size of the syndrome table to be manageable and the list of possible error events to be reasonable in size, the codeword length of EPCC needs to be short enough. However, the rate of such a short length code will be too low for hard drive applications. To accommodate the required large redundancy, it is possible to record only a highly compressed function of the parity bits of EPCC's tensor product with a symbol correcting code. In this paper, we show that the proposed tensor error-pattern correcting code (T-EPCC) is linear time encodable and also devise a low-complexity soft iterative decoding algorithm for EPCC's tensor product with q-ary LDPC (T-EPCC-qLDPC). Simulation results show that T-EPCC-qLDPC achieves almost similar performance to single-level qLDPC with a 1/2 KB sector at 50% reduction in decoding complexity. Moreover, 1 KB T-EPCC-qLDPC surpasses the performance of 1/2 KB single-level qLDPC at the same decoder complexity.Comment: Hakim Alhussien, Jaekyun Moon, "An Iteratively Decodable Tensor Product Code with Application to Data Storage
    • …
    corecore