2,749 research outputs found

    Analysis and design of three-stage concatenated color-shift keying

    No full text
    Visible Light Communication (VLC) relies on abundant unlicensed bandwidth resources. As an attractive high-data-rate modulation scheme designed for VLC, Color Shift Keying (CSK) assisted modulation is analysed. We commence our study from an uncoded M-CSK scheme relying on the joint Maximum Likelihood (ML) Hard-Detection (HD) of three colors, when communicating over an AWGN channel, where both empirical and analytical results are provided. We invoke EXtrinsic Information Transfer (EXIT) charts for designing a Maximum A-posteriori Probability (MAP) based Soft-Detection (SD) aided iterative receiver jointly detecting the three colors. Based on the EXIT characteristics of M-CSK, we design different signal labeling strategies for diverse color constellations and detection schemes, which are capable of achieving a substantially improved Bit Error Ratio (BER) performance. Thus, given a fixed transmission power, a CSK system using our proposed signal labeling is capable of increasing the reliable data transmission distance by about 30%

    Area spectral efficiency of soft-decision space–time–frequency shift-keying-aided slow-frequency-hopping multiple access

    No full text
    Slow-frequency-hopping multiple access (SFHMA) can provide inherent frequency diversity and beneficially randomize the effects of cochannel interference. It may also be advantageously combined with our novel space-time–frequency shift keying (STFSK) scheme. The proposed system’s area spectral efficiency is investigated in various cellular frequency reuse structures. Furthermore, it is compared to both classic Gaussian minimum shift keying (GMSK)-aided SFHMA and GMSK-assisted time- division/frequency-division multiple access (TD/FDMA). The more sophisticated third-generation wideband code-division multiple access (WCDMA) and the fourth-generation Long Term Evolution (LTE) systems were also included in our comparisons. We demonstrate that the area spectral efficiency of the STFSK-aided SFHMA system is higher than the GMSK-aided SFHMA and TD/FDMA systems, as well as WCDMA, but it is only 60% of the LTE system

    Experimental demonstration of RGB LED-based optical camera communications

    Get PDF
    Red, green, and blue (RGB) light-emitting diodes (LEDs) are widely used in everyday illumination, particularly where color-changing lighting is required. On the other hand, digital cameras with color filter arrays over image sensors have been also extensively integrated in smart devices. Therefore, optical camera communications (OCC) using RGB LEDs and color cameras is a promising candidate for cost-effective parallel visible light communications (VLC). In this paper, a single RGB LED-based OCC system utilizing a combination of undersampled phase-shift on off keying (UPSOOK), wavelength-division multiplexing (WDM), and multiple-input multiple-output (MIMO) techniques is designed, which offers higher space efficiency (3 bits/Hz/LED), long-distance, and nonflickering VLC data transmission. A proof-of-concept test bed is developed to assess the bit-error-rate performance of the proposed OCC system. The experimental results show that the proposed system using a single commercially available RGB LED and a standard 50-frame/s camera is able to achieve a data rate of 150 bits/s over a range of up to 60 m

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Transmit Diversity Assisted Space Shift Keying for Colocated and Distributed/Cooperative MIMO Elements

    No full text
    Space Shift Keying (SSK) modulation is a recently proposed MIMO technique, which activates only a single transmit antenna during each time slot and uses the specific index of the activated transmit antenna to implicitly convey information. Activating a single antenna is beneficial in terms of eliminating the inter-channel interference, and mitigates the peak-to-mean power ratio, while avoiding the need for synchronisation among transmit antennas. However, this benefit is achieved at a sacrifice, since the transmit diversity gain potential of the multiple transmit antennas is not fully exploited in existing SSK assisted systems. Furthermore, a high SSK throughput requires the transmitter to employ a high number of transmit antennas, which is not always practical. Hence, we propose four algorithms, namely open-loop Space Time Space Shift Keying (ST-SSK), closed-loop feedback-aided phase rotation, feedback-aided power allocation, and cooperative ST-SSK, for the sake of achieving a diversity gain. The performance improvements of the proposed schemes are demonstrated by Monte-Carlo simulations for spatially independent Rayleigh fading channels. Their robustness against channel estimation errors is also considered. We advocate the proposed ST-SSK techniques, which are capable of achieving a transmit diversity gain of about 10 dB at a BER of 10-5, at a cost of imposing a moderate throughput loss dedicated to a modest feedback overhead. Furthermore, our proposed ST-SSK scheme lends itself to efficient communication, because the deleterious effects of deep shadow fading no longer impose spatial correlation on the signals received by the antennas, which cannot be readily avoided by co-located antenna elements

    Structured Dispersion Matrices From Division Algebra Codes for Space-Time Shift Keying

    No full text
    We propose a novel method of constructing Dispersion Matrices (DM) for Coherent Space-Time Shift Keying (CSTSK) relying on arbitrary PSK signal sets by exploiting codes from division algebras. We show that classic codes from Cyclic Division Algebras (CDA) may be interpreted as DMs conceived for PSK signal sets. Hence various benefits of CDA codes such as their ability to achieve full diversity are inherited by CSTSK. We demonstrate that the proposed CDA based DMs are capable of achieving a lower symbol error ratio than the existing DMs generated using the capacity as their optimization objective function for both perfect and imperfect channel estimation
    corecore