328 research outputs found

    Performance of Fractionally Spread Multicarrier CDMA in AWGN as Well as Slow and Fast Nakagami-m Fading Channels

    No full text
    Abstract—In multicarrier code-division multiple-access (MCCDMA), the total system bandwidth is divided into a number of subbands, where each subband may use direct-sequence (DS) spreading and each subband signal is transmitted using a subcarrier frequency. In this paper, we divide the symbol duration into a number of fractional subsymbol durations also referred to here as fractions, in a manner analogous to subbands in MC-CDMA systems. In the proposed MC-CDMA scheme, the data streams are spread at both the symbol-fraction level and at the chip level by the transmitter, and hence the proposed scheme is referred to as the fractionally spread MC-CDMA arrangement, or FS MCCDMA. Furthermore, the FS MC-CDMA signal is additionally spread in the frequency (F)-domain using a spreading code with the aid of a number of subcarriers. In comparison to conventional MC-CDMA schemes, which are suitable for communications over frequency-selective fading channels, our study demonstrates that the proposed FS MC-CDMA is capable of efficiently exploiting both the frequency-selective and the time-selective characteristics of wireless channels. Index Terms—Broadband communications, code-division multiple access (CDMA), fractionally spreading, frequency-domain spreading, multicarrier modulation, Nakagami fading, timedomain spreading

    Time-Hopping Multicarrier Code-Division Multiple-Access

    No full text
    A time-hopping multicarrier code-division multiple-access (TH/MC-CDMA) scheme is proposed and investigated. In the proposed TH/MC-CDMA each information symbol is transmitted by a number of time-domain pulses with each time-domain pulse modulating a subcarrier. The transmitted information at the receiver is extracted from one of the, say MM, possible time-slot positions, i.e., assuming that MM-ary pulse position modulation is employed. Specifically, in this contribution we concentrate on the scenarios such as system design, power spectral density (PSD) and single-user based signal detection. The error performance of the TH/MC-CDMA system is investigated, when each subcarrier signal experiences flat Nakagami-mm fading in addition to additive white Gaussian noise (AWGN). According to our analysis and results, it can be shown that the TH/MC-CDMA signal is capable of providing a near ideal PSD, which is flat over the system bandwidth available, while decreases rapidly beyond that bandwidth. Explicitly, signals having this type of PSD is beneficial to both broadband and ultra-wide bandwidth (UWB) communications. Furthermore, our results show that, when optimum user address codes are employed, the single-user detector considered is near-far resistant, provided that the number of users supported by the system is lower than the number of subcarriers used for conveying an information symbol

    Exact BER Performance of Asynchronous MC-DS-CDMA over Fading Channels

    No full text
    In this contribution an accurate average Bit Error Rate (BER) formula is derived for MC-DS-CDMA in the context of asynchronous transmissions and random spreading sequences. We consider a flat Nakagami-m fading channel for each subcarrier. Our analysis is based on the Characteristic Function (CF) and does not rely on any assumption concerning the statistical behavior of the interference. We develop a new closed-form expression for the conditional CF of the inter-carrier interference and provide a procedure for calculating the exact BER expressed in the form of a single numerical integration. The accuracy of the Standard Gaussian Approximation (SGA) technique is also evaluated. Link-level results confirm the accuracy of the SGA for most practical conditions

    A Unified Exact BER Performance Analysis of Asynchronous DS-CDMA Systems Using BPSK Modulation over Fading Channels

    No full text
    Abstract—An asynchronous binary DS-CDMA system using random spreading sequences is considered when communicating over various fading channels. New closed-form expressions are derived for the conditional Characteristic Function (CF) of the multiple access interference. A unified analysis is provided for calculating the exact average Bit Error Rate (BER) expressed in the form of a single numerical integration based on the CF approach. The numerical results obtained from our exact BER analysis are verified by our simulation results and are also compared to those obtained by the Standard Gaussian Approximation (SGA), confirming the accuracy of the SGA for most practical conditions, except for high Signal-to-Noise Ratios (SNR) and for a low number of interferers. Index Terms—BER analysis, CDMA, fading, Rayleigh, Ricean, Hoyt, Nakagami-m, random spreading sequence

    Adaptive Space-Time-Spreading-Assisted Wideband CDMA Systems Communicating over Dispersive Nakagami-m Fading Channels

    No full text
    In this contribution, the performance of wideband code-division multiple-access (W-CDMA) systems using space-timespreading-(STS-) based transmit diversity is investigated, when frequency-selective Nakagami-m fading channels, multiuser interference, and background noise are considered. The analysis and numerical results suggest that the achievable diversity order is the product of the frequency-selective diversity order and the transmit diversity order. Furthermore, both the transmit diversity and the frequency-selective diversity have the same order of importance. Since W-CDMA signals are subjected to frequency-selective fading, the number of resolvable paths at the receiver may vary over a wide range depending on the transmission environment encountered. It can be shown that, for wireless channels where the frequency selectivity is sufficiently high, transmit diversity may be not necessitated. Under this case, multiple transmission antennas can be leveraged into an increased bitrate. Therefore, an adaptive STS-based transmission scheme is then proposed for improving the throughput ofW-CDMA systems. Our numerical results demonstrate that this adaptive STS-based transmission scheme is capable of significantly improving the effective throughput of W-CDMA systems. Specifically, the studied W-CDMA system’s bitrate can be increased by a factor of three at the modest cost of requiring an extra 0.4 dB or 1.2 dB transmitted power in the context of the investigated urban or suburban areas, respectively

    Interference-Free Broadband Single- and Multi-Carrier DS-CDMA

    No full text
    The choice of the direct sequence spreading code in DS-CDMA predetermines the properties of the system. This contribution demonstrates that the family of codes exhibiting an interference-free window (IFW) outperforms classic spreading codes, provided that the interfering multi-user and multipath components arrive within this IFW, which may be ensured with the aid of quasi-synchronous adaptive timing advance control. It is demonstrated that the IFW duration may be extended with the advent of multicarrier DS-CDMA proportionately to the number of subcarriers. Hence, the resultant MC DS-CDMA system is capable of exhibiting nearsingle-user performance without employing a multi-user detector. A limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles

    Exact BER Calculation of Asynchronous DS-CDMA Systems Communicating over Hoyt Channels

    No full text
    An asynchronous binary DS-CDMA system using random spreading sequences is considered in flat Hoyt fading channels. A new closed-form expression is derived for the conditional characteristic function of the multiple access interference. The exact average BER is expressed as a single numerical integration based on the characteristic function approach. The numerical results obtained from our exact BER analysis are verified by our simulation results and also compared to those obtained by the standard Gaussian approximation

    Downlink Space–Time Spreading Using Interference Rejection Codes

    No full text
    In this paper, the authors will investigate the performance of a loosely synchronized (LS) code-based space–time spreading (STS) scheme in comparison to that of classic Walsh code and pseudonoise code-based STS when communicating over dispersive Nakagami-m multipath channels. Closed-form formulas are derived for characterizing the bit-error-rate performance as a function of the number of resolvable paths L and the number of users K. Our numerical results suggest that the employment of LS code-based STS scheme is beneficial in a low-user-load and low-dispersion channel scenario, where a near-single-user performance can be achieved without a multiuser detector. Index Terms—Code-division multiple access (CDMA), Gaussian approximation, interference-free window (IFW), large area synchronized (LAS) codes, loosely synchronized (LS) codes, Nakagami-m fading

    Accurate BER Analysis of QPSK Modulated Asynchronous DS-CDMA Systems Communicating over Rayleigh Channels

    No full text
    The accurate average BER calculation of an asynchronous DS-CDMA system using random spreading sequences is studied in Rayleigh fading channels. An accurate closed-form expression is derived for the conditional characteristic function of the multiple access interference. An accurate BER expression is provided, which only requires a single numerical integration. Our numerical simulation results verify its accuracy, and also demonstrate the relative inaccuracy of the Gaussian approximation

    On the Uplink Performance of Asynchronous LAS-CDMA

    No full text
    In this paper closed-form formulae are derived for characterizing the BER performance of Large Area Synchronous CDMA (LAS-CDMA) as a function of both the number of resolvable paths Lp and the maximum delay difference τmax, as well as the number of users K, when communicating over a Nakagami-m fading channel. Moreover, we comparatively studies the performance of LAS-CDMA and the traditional random code based DS-CDMA
    corecore