391 research outputs found

    A second-order PHD filter with mean and variance in target number

    Get PDF
    The Probability Hypothesis Density (PHD) and Cardinalized PHD (CPHD) filters are popular solutions to the multi-target tracking problem due to their low complexity and ability to estimate the number and states of targets in cluttered environments. The PHD filter propagates the first-order moment (i.e. mean) of the number of targets while the CPHD propagates the cardinality distribution in the number of targets, albeit for a greater computational cost. Introducing the Panjer point process, this paper proposes a second-order PHD filter, propagating the second-order moment (i.e. variance) of the number of targets alongside its mean. The resulting algorithm is more versatile in the modelling choices than the PHD filter, and its computational cost is significantly lower compared to the CPHD filter. The paper compares the three filters in statistical simulations which demonstrate that the proposed filter reacts more quickly to changes in the number of targets, i.e., target births and target deaths, than the CPHD filter. In addition, a new statistic for multi-object filters is introduced in order to study the correlation between the estimated number of targets in different regions of the state space, and propose a quantitative analysis of the spooky effect for the three filters

    Robust Distributed Fusion with Labeled Random Finite Sets

    Get PDF
    This paper considers the problem of the distributed fusion of multi-object posteriors in the labeled random finite set filtering framework, using Generalized Covariance Intersection (GCI) method. Our analysis shows that GCI fusion with labeled multi-object densities strongly relies on label consistencies between local multi-object posteriors at different sensor nodes, and hence suffers from a severe performance degradation when perfect label consistencies are violated. Moreover, we mathematically analyze this phenomenon from the perspective of Principle of Minimum Discrimination Information and the so called yes-object probability. Inspired by the analysis, we propose a novel and general solution for the distributed fusion with labeled multi-object densities that is robust to label inconsistencies between sensors. Specifically, the labeled multi-object posteriors are firstly marginalized to their unlabeled posteriors which are then fused using GCI method. We also introduce a principled method to construct the labeled fused density and produce tracks formally. Based on the developed theoretical framework, we present tractable algorithms for the family of generalized labeled multi-Bernoulli (GLMB) filters including δ\delta-GLMB, marginalized δ\delta-GLMB and labeled multi-Bernoulli filters. The robustness and efficiency of the proposed distributed fusion algorithm are demonstrated in challenging tracking scenarios via numerical experiments.Comment: 17pages, 23 figure

    Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA and association-based MeMBer

    Full text link
    Recent developments in random finite sets (RFSs) have yielded a variety of tracking methods that avoid data association. This paper derives a form of the full Bayes RFS filter and observes that data association is implicitly present, in a data structure similar to MHT. Subsequently, algorithms are obtained by approximating the distribution of associations. Two algorithms result: one nearly identical to JIPDA, and another related to the MeMBer filter. Both improve performance in challenging environments.Comment: Journal version at http://ieeexplore.ieee.org/document/7272821. Matlab code of simple implementation included with ancillary file

    Hybrid Poisson and multi-Bernoulli filters

    Full text link
    The probability hypothesis density (PHD) and multi-target multi-Bernoulli (MeMBer) filters are two leading algorithms that have emerged from random finite sets (RFS). In this paper we study a method which combines these two approaches. Our work is motivated by a sister paper, which proves that the full Bayes RFS filter naturally incorporates a Poisson component representing targets that have never been detected, and a linear combination of multi-Bernoulli components representing targets under track. Here we demonstrate the benefit (in speed of track initiation) that maintenance of a Poisson component of undetected targets provides. Subsequently, we propose a method of recycling, which projects Bernoulli components with a low probability of existence onto the Poisson component (as opposed to deleting them). We show that this allows us to achieve similar tracking performance using a fraction of the number of Bernoulli components (i.e., tracks).Comment: Submitted to 15th International Conference on Information Fusion (2012
    • …
    corecore