55,191 research outputs found
Recommended from our members
Neck linker docking is critical for Kinesin-1 force generation in cells but at a cost to motor speed and processivity.
Kinesin force generation involves ATP-induced docking of the neck linker (NL) along the motor core. However, the roles of the proposed steps of NL docking, cover-neck bundle (CNB) and asparagine latch (N-latch) formation, during force generation are unclear. Furthermore, the necessity of NL docking for transport of membrane-bound cargo in cells has not been tested. We generated kinesin-1 motors impaired in CNB and/or N-latch formation based on molecular dynamics simulations. The mutant motors displayed reduced force output and inability to stall in optical trap assays but exhibited increased speeds, run lengths, and landing rates under unloaded conditions. NL docking thus enhances force production but at a cost to speed and processivity. In cells, teams of mutant motors were hindered in their ability to drive transport of Golgi elements (high-load cargo) but not peroxisomes (low-load cargo). These results demonstrate that the NL serves as a mechanical element for kinesin-1 transport under physiological conditions
Influence of cardiac tissue anisotropy on re-entrant activation in computational models of ventricular fibrillation
The aim of this study was to establish the role played by anisotropic diffusion in (i) the number of filaments and epicardial phase singularities that sustain ventricular fibrillation in the heart, (ii) the lifetimes of filaments and phase singularities, and (iii) the creation and annihilation dynamics of filaments and phase singularities. A simplified monodomain model of cardiac tissue was used, with membrane excitation described by a simplified 3-variable model. The model was configured so that a single re-entrant wave was unstable, and fragmented into multiple re-entrant waves. Re-entry was then initiated in tissue slabs with varying anisotropy ratio. The main findings of this computational study are: (i) anisotropy ratio influenced the number of filaments Sustaining simulated ventricular fibrillation, with more filaments present in simulations with smaller values of transverse diffusion coefficient, (ii) each re-entrant filament was associated with around 0.9 phase singularities on the surface of the slab geometry, (iii) phase singularities were longer lived than filaments, and (iv) the creation and annihilation of filaments and phase singularities were linear functions of the number of filaments and phase singularities, and these relationships were independent of the anisotropy ratio. This study underscores the important role played by tissue anisotropy in cardiac ventricular fibrillation
Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations
Receptor-ligand interactions are essential for biological function and their
binding strength is commonly explained in terms of static lock-and-key models
based on molecular complementarity. However, detailed information of the full
unbinding pathway is often lacking due, in part, to the static nature of atomic
structures and ensemble averaging inherent to bulk biophysics approaches. Here
we combine molecular dynamics and high-speed force spectroscopy on the
streptavidin-biotin complex to determine the binding strength and unbinding
pathways over the widest dynamic range. Experiment and simulation show
excellent agreement at overlapping velocities and provided evidence of the
unbinding mechanisms. During unbinding, biotin crosses multiple energy barriers
and visits various intermediate states far from the binding pocket while
streptavidin undergoes transient induced fits, all varying with loading rate.
This multistate process slows down the transition to the unbound state and
favors rebinding, thus explaining the long lifetime of the complex. We provide
an atomistic, dynamic picture of the unbinding process, replacing a simple
two-state picture with one that involves many routes to the lock and
rate-dependent induced-fit motions for intermediates, which might be relevant
for other receptor-ligand bonds.Comment: 21 pages, 4 figure
Trains, tails and loops of partially adsorbed semi-flexible filaments
Polymer adsorption is a fundamental problem in statistical mechanics that has
direct relevance to diverse disciplines ranging from biological lubrication to
stability of colloidal suspensions. We combine experiments with computer
simulations to investigate depletion induced adsorption of semi-flexible
polymers onto a hard-wall. Three dimensional filament configurations of
partially adsorbed F-actin polymers are visualized with total internal
reflection fluorescence microscopy. This information is used to determine the
location of the adsorption/desorption transition and extract the statistics of
trains, tails and loops of partially adsorbed filament configurations. In
contrast to long flexible filaments which primarily desorb by the formation of
loops, the desorption of stiff, finite-sized filaments is largely driven by
fluctuating filament tails. Simulations quantitatively reproduce our
experimental data and allow us to extract universal laws that explain scaling
of the adsorption-desorption transition with relevant microscopic parameters.
Our results demonstrate how the adhesion strength, filament stiffness, length,
as well as the configurational space accessible to the desorbed filament can be
used to design the characteristics of filament adsorption and thus engineer
properties of composite biopolymeric materials
- …
