26,407 research outputs found
Synovial joint lubrication – does nature teach more effective engineering lubrication strategies?
Nature shows numerous examples of systems which show energy efficiency, elegance in their design and optimum use of materials. Biomimetics is an emerging field of research in engineering and successes have been documented in the diverse fields of robotics, mechanics, materials engineering and many more. To date little biomimetics research has been directed towards tribology in terms of transferring technologies from biological systems into engineering applications. The potential for biomimicry has been recognised in terms of replicating natural lubricants but this system reviews the potential for mimicking the synovial joint as an efficient and durable tribological system for potential engineering systems. The use of materials and the integration of materials technology and fluid/surface interactions are central to the discussion
Mechanoregulation of bone remodeling and healing as inspiration for self-repair in materials
The material bone has attracted the attention of material scientists due to its fracture resistance and ability to self-repair. A mechanoregulated exchange of damaged bone using newly synthesized material avoids the accumulation of fatigue damage. This remodeling process is also the basis for structural adaptation to common loading conditions, thereby reducing the probability of material failure. In the case of fracture, an initial step of tissue formation is followed by a mechanobiological controlled restoration of the pre-fracture state. The present perspective focuses on these mechanobiological aspects of bone remodeling and healing. Specifically, the role of the control function is considered, which describes mechanoregulation as a link between mechanical stimulation and the local response of the material through changes in structure or material properties. Mechanical forces propagate over large distances leading to a complex non-local feedback between mechanical stimulation and material response. To better understand such phenomena, computer models are often employed. As expected from control theory, negative and positive feedback loops lead to entirely different time evolutions, corresponding to stable and unstable states of the material system. After some background information about bone remodeling and healing, we describe a few representative models, the corresponding control functions, and their consequences. The results are then discussed with respect to the potential design of synthetic materials with specific self-repair properties
Biomimetic microelectronics for regenerative neuronal cuff implants
Smart biomimetics, a unique class of devices combining the mechanical adaptivity of soft actuators with the imperceptibility of microelectronics, is introduced. Due to their inherent ability to self‐assemble, biomimetic microelectronics can firmly yet gently attach to an inorganic or biological tissue enabling enclosure of, for example, nervous fibers, or guide the growth of neuronal cells during regeneration
Nature as paradigm for sustainability in the textile and apparel industry
Imagine if clothing of the future would adapt, grow, self repair and change appearance. The relationship between wearer and garment would be that of symbiosis enabled by developments in material science that produce textiles able to imitate functionalities of living organisms rather than just the properties of natural fibres. We can expect clothing of the future to host an array of new properties that may interact or integrate with the body, self maintain, reproduce and self assemble to accommodate changes in our activity and environment. Materials and structures in nature already demonstrate these functions and can indicate ways of transferring the technology into clothing. Biomimetics can operate as a platform to accommodate these future requirements and provide a new perspective in the design and assembly of clothing systems
The Problem of Adhesion Methods and Locomotion Mechanism Development for Wall-Climbing Robots
This review considers a problem in the development of mobile robot adhesion
methods with vertical surfaces and the appropriate locomotion mechanism design.
The evolution of adhesion methods for wall-climbing robots (based on friction,
magnetic forces, air pressure, electrostatic adhesion, molecular forces,
rheological properties of fluids and their combinations) and their locomotion
principles (wheeled, tracked, walking, sliding framed and hybrid) is studied.
Wall-climbing robots are classified according to the applications, adhesion
methods and locomotion mechanisms. The advantages and disadvantages of various
adhesion methods and locomotion mechanisms are analyzed in terms of mobility,
noiselessness, autonomy and energy efficiency. Focus is placed on the physical
and technical aspects of the adhesion methods and the possibility of combining
adhesion and locomotion methods
Biomimetic spatial and temporal (4D) design and fabrication
We imagine the built environment of the future as a ‘bio-hybrid machine for living in’ that will sense and react to activities within the space in order to provide experiences and services that will elevate quality of life while coexisting seamlessly with humans and the natural environment. The study of Hierarchical design in biological materials has the potential to alter the way designers/ engineers/ crafts-men of the future engage with materials in order to realise such visions. We are ex-ploring this design approach using digital manufacturing technologies such as jac-quard weaving and 3D printing
Part 2: pushing the envelope. A process perspective for architecture, engineering and construction
In this article, I am building on an emerging 'process view of nature' and how biological membranes emerge through the combined action of (locally) autonomous construction agents. In Part 1, we considered the simultaneous aggregation and disaggregation of matter around embedded processes, used to create, sustain and regulate matter, energy and information gradients from which 'work' is derived for the benefit of the agents or organisms present in the system. In Part 2, I intend to demonstrate that emerging digital design, simulation and fabrication techniques, when linked to sensory and effector feedback, memory and actions, directed by pre-encoded objectives (as rules or algorithms), produce the same fundamental unit of 'agency' as biological agents possess. By understanding how biological membranes emerge in nature, as the outcome of 'negotiated agency', to regulate matter, energy and information exchange between adjacent spaces, we can begin to consider the building envelope as a biological interface or membrane from which 'work' can be derived from the environment we inhabit, as a physiological extension of ourselves
- …
