33,384 research outputs found

    Genetic Programming for Multibiometrics

    Full text link
    Biometric systems suffer from some drawbacks: a biometric system can provide in general good performances except with some individuals as its performance depends highly on the quality of the capture. One solution to solve some of these problems is to use multibiometrics where different biometric systems are combined together (multiple captures of the same biometric modality, multiple feature extraction algorithms, multiple biometric modalities...). In this paper, we are interested in score level fusion functions application (i.e., we use a multibiometric authentication scheme which accept or deny the claimant for using an application). In the state of the art, the weighted sum of scores (which is a linear classifier) and the use of an SVM (which is a non linear classifier) provided by different biometric systems provide one of the best performances. We present a new method based on the use of genetic programming giving similar or better performances (depending on the complexity of the database). We derive a score fusion function by assembling some classical primitives functions (+, *, -, ...). We have validated the proposed method on three significant biometric benchmark datasets from the state of the art

    Fast computation of the performance evaluation of biometric systems: application to multibiometric

    Full text link
    The performance evaluation of biometric systems is a crucial step when designing and evaluating such systems. The evaluation process uses the Equal Error Rate (EER) metric proposed by the International Organization for Standardization (ISO/IEC). The EER metric is a powerful metric which allows easily comparing and evaluating biometric systems. However, the computation time of the EER is, most of the time, very intensive. In this paper, we propose a fast method which computes an approximated value of the EER. We illustrate the benefit of the proposed method on two applications: the computing of non parametric confidence intervals and the use of genetic algorithms to compute the parameters of fusion functions. Experimental results show the superiority of the proposed EER approximation method in term of computing time, and the interest of its use to reduce the learning of parameters with genetic algorithms. The proposed method opens new perspectives for the development of secure multibiometrics systems by speeding up their computation time.Comment: Future Generation Computer Systems (2012

    UBSegNet: Unified Biometric Region of Interest Segmentation Network

    Full text link
    Digital human identity management, can now be seen as a social necessity, as it is essentially required in almost every public sector such as, financial inclusions, security, banking, social networking e.t.c. Hence, in today's rampantly emerging world with so many adversarial entities, relying on a single biometric trait is being too optimistic. In this paper, we have proposed a novel end-to-end, Unified Biometric ROI Segmentation Network (UBSegNet), for extracting region of interest from five different biometric traits viz. face, iris, palm, knuckle and 4-slap fingerprint. The architecture of the proposed UBSegNet consists of two stages: (i) Trait classification and (ii) Trait localization. For these stages, we have used a state of the art region based convolutional neural network (RCNN), comprising of three major parts namely convolutional layers, region proposal network (RPN) along with classification and regression heads. The model has been evaluated over various huge publicly available biometric databases. To the best of our knowledge this is the first unified architecture proposed, segmenting multiple biometric traits. It has been tested over around 5000 * 5 = 25,000 images (5000 images per trait) and produces very good results. Our work on unified biometric segmentation, opens up the vast opportunities in the field of multiple biometric traits based authentication systems.Comment: 4th Asian Conference on Pattern Recognition (ACPR 2017

    Human brain distinctiveness based on EEG spectral coherence connectivity

    Full text link
    The use of EEG biometrics, for the purpose of automatic people recognition, has received increasing attention in the recent years. Most of current analysis rely on the extraction of features characterizing the activity of single brain regions, like power-spectrum estimates, thus neglecting possible temporal dependencies between the generated EEG signals. However, important physiological information can be extracted from the way different brain regions are functionally coupled. In this study, we propose a novel approach that fuses spectral coherencebased connectivity between different brain regions as a possibly viable biometric feature. The proposed approach is tested on a large dataset of subjects (N=108) during eyes-closed (EC) and eyes-open (EO) resting state conditions. The obtained recognition performances show that using brain connectivity leads to higher distinctiveness with respect to power-spectrum measurements, in both the experimental conditions. Notably, a 100% recognition accuracy is obtained in EC and EO when integrating functional connectivity between regions in the frontal lobe, while a lower 97.41% is obtained in EC (96.26% in EO) when fusing power spectrum information from centro-parietal regions. Taken together, these results suggest that functional connectivity patterns represent effective features for improving EEG-based biometric systems.Comment: Key words: EEG, Resting state, Biometrics, Spectral coherence, Match score fusio

    Human Gait Database for Normal Walk Collected by Smart Phone Accelerometer

    Full text link
    The goal of this study is to introduce a comprehensive gait database of 93 human subjects who walked between two endpoints during two different sessions and record their gait data using two smartphones, one was attached to the right thigh and another one on the left side of the waist. This data is collected with the intention to be utilized by a deep learning-based method which requires enough time points. The metadata including age, gender, smoking, daily exercise time, height, and weight of an individual is recorded. this data set is publicly available

    The effect of time on gait recognition performance

    No full text
    Many studies have shown that it is possible to recognize people by the way they walk. However, there are a number of covariate factors that affect recognition performance. The time between capturing the gallery and the probe has been reported to affect recognition the most. To date, no study has shown the isolated effect of time, irrespective of other covariates. Here we present the first principled study that examines the effect of elapsed time on gait recognition. Using empirical evidence we show for the first time that elapsed time does not affect recognition significantly in the short to medium term. By controlling the clothing worn by the subjects and the environment, a Correct Classification Rate (CCR) of 95% has been achieved over 9 months, on a dataset of 2280 gait samples. Our results show that gait can be used as a reliable biometric over time and at a distance. We have created a new multimodal temporal database to enable the research community to investigate various gait and face covariates. We have also investigated the effect of different type of clothes, variations in speed and footwear on the recognition performance. We have demonstrated that clothing drastically affects performance regardless of elapsed time and significantly more than any of the other covariates that we have considered here. The research then suggests a move towards developing appearance invariant recognition algorithms. Thi
    corecore