85,779 research outputs found
Hybrid Template Update System for Unimodal Biometric Systems
Semi-supervised template update systems allow to automatically take into
account the intra-class variability of the biometric data over time. Such
systems can be inefficient by including too many impostor's samples or skipping
too many genuine's samples. In the first case, the biometric reference drifts
from the real biometric data and attracts more often impostors. In the second
case, the biometric reference does not evolve quickly enough and also
progressively drifts from the real biometric data. We propose a hybrid system
using several biometric sub-references in order to increase per- formance of
self-update systems by reducing the previously cited errors. The proposition is
validated for a keystroke- dynamics authentication system (this modality
suffers of high variability over time) on two consequent datasets from the
state of the art.Comment: IEEE International Conference on Biometrics: Theory, Applications and
Systems (BTAS 2012), Washington, District of Columbia, USA : France (2012
Genetic Programming for Multibiometrics
Biometric systems suffer from some drawbacks: a biometric system can provide
in general good performances except with some individuals as its performance
depends highly on the quality of the capture. One solution to solve some of
these problems is to use multibiometrics where different biometric systems are
combined together (multiple captures of the same biometric modality, multiple
feature extraction algorithms, multiple biometric modalities...). In this
paper, we are interested in score level fusion functions application (i.e., we
use a multibiometric authentication scheme which accept or deny the claimant
for using an application). In the state of the art, the weighted sum of scores
(which is a linear classifier) and the use of an SVM (which is a non linear
classifier) provided by different biometric systems provide one of the best
performances. We present a new method based on the use of genetic programming
giving similar or better performances (depending on the complexity of the
database). We derive a score fusion function by assembling some classical
primitives functions (+, *, -, ...). We have validated the proposed method on
three significant biometric benchmark datasets from the state of the art
An Evaluation of Score Level Fusion Approaches for Fingerprint and Finger-vein Biometrics
Biometric systems have to address many requirements, such as large population
coverage, demographic diversity, varied deployment environment, as well as
practical aspects like performance and spoofing attacks. Traditional unimodal
biometric systems do not fully meet the aforementioned requirements making them
vulnerable and susceptible to different types of attacks. In response to that,
modern biometric systems combine multiple biometric modalities at different
fusion levels. The fused score is decisive to classify an unknown user as a
genuine or impostor. In this paper, we evaluate combinations of score
normalization and fusion techniques using two modalities (fingerprint and
finger-vein) with the goal of identifying which one achieves better improvement
rate over traditional unimodal biometric systems. The individual scores
obtained from finger-veins and fingerprints are combined at score level using
three score normalization techniques (min-max, z-score, hyperbolic tangent) and
four score fusion approaches (minimum score, maximum score, simple sum, user
weighting). The experimental results proved that the combination of hyperbolic
tangent score normalization technique with the simple sum fusion approach
achieve the best improvement rate of 99.98%.Comment: 10 pages, 5 figures, 3 tables, conference, NISK 201
Multimodal person recognition for human-vehicle interaction
Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies
Homomorphic Encryption for Speaker Recognition: Protection of Biometric Templates and Vendor Model Parameters
Data privacy is crucial when dealing with biometric data. Accounting for the
latest European data privacy regulation and payment service directive,
biometric template protection is essential for any commercial application.
Ensuring unlinkability across biometric service operators, irreversibility of
leaked encrypted templates, and renewability of e.g., voice models following
the i-vector paradigm, biometric voice-based systems are prepared for the
latest EU data privacy legislation. Employing Paillier cryptosystems, Euclidean
and cosine comparators are known to ensure data privacy demands, without loss
of discrimination nor calibration performance. Bridging gaps from template
protection to speaker recognition, two architectures are proposed for the
two-covariance comparator, serving as a generative model in this study. The
first architecture preserves privacy of biometric data capture subjects. In the
second architecture, model parameters of the comparator are encrypted as well,
such that biometric service providers can supply the same comparison modules
employing different key pairs to multiple biometric service operators. An
experimental proof-of-concept and complexity analysis is carried out on the
data from the 2013-2014 NIST i-vector machine learning challenge
Using a Bayesian averaging model for estimating the reliability of decisions in multimodal biometrics
The issue of reliable authentication is of increasing importance in modern society. Corporations, businesses and individuals often wish to restrict access to logical or physical resources to those with relevant privileges. A popular method for authentication is the use of biometric data, but the uncertainty that arises due to the lack of uniqueness in biometrics has lead there to be a great deal of effort invested into multimodal biometrics. These multimodal biometric systems can give rise to large, distributed data sets that are used to decide the authenticity of a user. Bayesian model averaging (BMA) methodology has been used to allow experts to evaluate the reliability of decisions made in data mining applications. The use of decision tree (DT) models within the BMA methodology gives experts additional information on how decisions are made. In this paper we discuss how DT models within the BMA methodology can be used for authentication in multimodal biometric systems
Privacy-Preserving Facial Recognition Using Biometric-Capsules
Indiana University-Purdue University Indianapolis (IUPUI)In recent years, developers have used the proliferation of biometric sensors in smart devices, along with recent advances in deep learning, to implement an array of biometrics-based recognition systems. Though these systems demonstrate remarkable performance and have seen wide acceptance, they present unique and pressing security and privacy concerns. One proposed method which addresses these concerns is the elegant, fusion-based Biometric-Capsule (BC) scheme. The BC scheme is provably secure, privacy-preserving, cancellable and interoperable in its secure feature fusion design.
In this work, we demonstrate that the BC scheme is uniquely fit to secure state-of-the-art facial verification, authentication and identification systems. We compare the performance of unsecured, underlying biometrics systems to the performance of the BC-embedded systems in order to directly demonstrate the minimal effects of the privacy-preserving BC scheme on underlying system performance. Notably, we demonstrate that, when seamlessly embedded into a state-of-the-art FaceNet and ArcFace verification systems which achieve accuracies of 97.18% and 99.75% on the benchmark LFW dataset, the BC-embedded systems are able to achieve accuracies of 95.13% and 99.13% respectively. Furthermore, we also demonstrate that the BC scheme outperforms or performs as well as several other proposed secure biometric methods
- …
