96,247 research outputs found
Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation
Image segmentation is a fundamental problem in biomedical image analysis.
Recent advances in deep learning have achieved promising results on many
biomedical image segmentation benchmarks. However, due to large variations in
biomedical images (different modalities, image settings, objects, noise, etc),
to utilize deep learning on a new application, it usually needs a new set of
training data. This can incur a great deal of annotation effort and cost,
because only biomedical experts can annotate effectively, and often there are
too many instances in images (e.g., cells) to annotate. In this paper, we aim
to address the following question: With limited effort (e.g., time) for
annotation, what instances should be annotated in order to attain the best
performance? We present a deep active learning framework that combines fully
convolutional network (FCN) and active learning to significantly reduce
annotation effort by making judicious suggestions on the most effective
annotation areas. We utilize uncertainty and similarity information provided by
FCN and formulate a generalized version of the maximum set cover problem to
determine the most representative and uncertain areas for annotation. Extensive
experiments using the 2015 MICCAI Gland Challenge dataset and a lymph node
ultrasound image segmentation dataset show that, using annotation suggestions
by our method, state-of-the-art segmentation performance can be achieved by
using only 50% of training data.Comment: Accepted at MICCAI 201
Task Decomposition and Synchronization for Semantic Biomedical Image Segmentation
Semantic segmentation is essentially important to biomedical image analysis.
Many recent works mainly focus on integrating the Fully Convolutional Network
(FCN) architecture with sophisticated convolution implementation and deep
supervision. In this paper, we propose to decompose the single segmentation
task into three subsequent sub-tasks, including (1) pixel-wise image
segmentation, (2) prediction of the class labels of the objects within the
image, and (3) classification of the scene the image belonging to. While these
three sub-tasks are trained to optimize their individual loss functions of
different perceptual levels, we propose to let them interact by the task-task
context ensemble. Moreover, we propose a novel sync-regularization to penalize
the deviation between the outputs of the pixel-wise segmentation and the class
prediction tasks. These effective regularizations help FCN utilize context
information comprehensively and attain accurate semantic segmentation, even
though the number of the images for training may be limited in many biomedical
applications. We have successfully applied our framework to three diverse 2D/3D
medical image datasets, including Robotic Scene Segmentation Challenge 18
(ROBOT18), Brain Tumor Segmentation Challenge 18 (BRATS18), and Retinal Fundus
Glaucoma Challenge (REFUGE18). We have achieved top-tier performance in all
three challenges.Comment: IEEE Transactions on Medical Imagin
A New Ensemble Learning Framework for 3D Biomedical Image Segmentation
3D image segmentation plays an important role in biomedical image analysis.
Many 2D and 3D deep learning models have achieved state-of-the-art segmentation
performance on 3D biomedical image datasets. Yet, 2D and 3D models have their
own strengths and weaknesses, and by unifying them together, one may be able to
achieve more accurate results. In this paper, we propose a new ensemble
learning framework for 3D biomedical image segmentation that combines the
merits of 2D and 3D models. First, we develop a fully convolutional network
based meta-learner to learn how to improve the results from 2D and 3D models
(base-learners). Then, to minimize over-fitting for our sophisticated
meta-learner, we devise a new training method that uses the results of the
base-learners as multiple versions of "ground truths". Furthermore, since our
new meta-learner training scheme does not depend on manual annotation, it can
utilize abundant unlabeled 3D image data to further improve the model.
Extensive experiments on two public datasets (the HVSMR 2016 Challenge dataset
and the mouse piriform cortex dataset) show that our approach is effective
under fully-supervised, semi-supervised, and transductive settings, and attains
superior performance over state-of-the-art image segmentation methods.Comment: To appear in AAAI-2019. The first three authors contributed equally
to the pape
Sub-cortical brain structure segmentation using F-CNN's
In this paper we propose a deep learning approach for segmenting sub-cortical
structures of the human brain in Magnetic Resonance (MR) image data. We draw
inspiration from a state-of-the-art Fully-Convolutional Neural Network (F-CNN)
architecture for semantic segmentation of objects in natural images, and adapt
it to our task. Unlike previous CNN-based methods that operate on image
patches, our model is applied on a full blown 2D image, without any alignment
or registration steps at testing time. We further improve segmentation results
by interpreting the CNN output as potentials of a Markov Random Field (MRF),
whose topology corresponds to a volumetric grid. Alpha-expansion is used to
perform approximate inference imposing spatial volumetric homogeneity to the
CNN priors. We compare the performance of the proposed pipeline with a similar
system using Random Forest-based priors, as well as state-of-art segmentation
algorithms, and show promising results on two different brain MRI datasets.Comment: ISBI 2016: International Symposium on Biomedical Imaging, Apr 2016,
Prague, Czech Republi
Integrating semi-supervised label propagation and random forests for multi-atlas based hippocampus segmentation
A novel multi-atlas based image segmentation method is proposed by
integrating a semi-supervised label propagation method and a supervised random
forests method in a pattern recognition based label fusion framework. The
semi-supervised label propagation method takes into consideration local and
global image appearance of images to be segmented and segments the images by
propagating reliable segmentation results obtained by the supervised random
forests method. Particularly, the random forests method is used to train a
regression model based on image patches of atlas images for each voxel of the
images to be segmented. The regression model is used to obtain reliable
segmentation results to guide the label propagation for the segmentation. The
proposed method has been compared with state-of-the-art multi-atlas based image
segmentation methods for segmenting the hippocampus in MR images. The
experiment results have demonstrated that our method obtained superior
segmentation performance.Comment: Accepted paper in IEEE International Symposium on Biomedical Imaging
(ISBI), 201
Journal Staff
This book constitutes the refereed proceedings of the 18th Scandinavian Conference on Image Analysis, SCIA 2013, held in Espoo, Finland, in June 2013. The 67 revised full papers presented were carefully reviewed and selected from 132 submissions. The papers are organized in topical sections on feature extraction and segmentation, pattern recognition and machine learning, medical and biomedical image analysis, faces and gestures, object and scene recognition, matching, registration, and alignment, 3D vision, color and multispectral image analysis, motion analysis, systems and applications, human-centered computing, and video and multimedia analysis
- …
