1,037,674 research outputs found
Biomedical bulk data processing program
Analog-to-digital computer accepts physiological flight data as three basic analog input signals - the ECG signal, the flowmeter signal which is a respiration monitor, and the accelerometer signal which measures the normal-g-load on the subject
Identifying Data Sharing in Biomedical Literature
Many policies and projects now encourage investigators to share their raw research data with other scientists. Unfortunately, it is difficult to measure the effectiveness of these initiatives because data can be shared in such a variety of mechanisms and locations. We propose a novel approach to finding shared datasets: using NLP techniques to identify declarations of dataset sharing within the full text of primary research articles. Using regular expression patterns and machine learning algorithms on open access biomedical literature, our system was able to identify 61% of articles with shared datasets with 80% precision. A simpler version of our classifier achieved higher recall (86%), though lower precision (49%). We believe our results demonstrate the feasibility of this approach and hope to inspire further study of dataset retrieval techniques and policy evaluation.

Using Neural Networks for Relation Extraction from Biomedical Literature
Using different sources of information to support automated extracting of
relations between biomedical concepts contributes to the development of our
understanding of biological systems. The primary comprehensive source of these
relations is biomedical literature. Several relation extraction approaches have
been proposed to identify relations between concepts in biomedical literature,
namely, using neural networks algorithms. The use of multichannel architectures
composed of multiple data representations, as in deep neural networks, is
leading to state-of-the-art results. The right combination of data
representations can eventually lead us to even higher evaluation scores in
relation extraction tasks. Thus, biomedical ontologies play a fundamental role
by providing semantic and ancestry information about an entity. The
incorporation of biomedical ontologies has already been proved to enhance
previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1
Ontology-based knowledge representation of experiment metadata in biological data mining
According to the PubMed resource from the U.S. National Library of Medicine,
over 750,000 scientific articles have been published in the ~5000 biomedical journals
worldwide in the year 2007 alone. The vast majority of these publications include results from hypothesis-driven experimentation in overlapping biomedical research domains. Unfortunately, the sheer volume of information being generated by the biomedical research enterprise has made it virtually impossible for investigators to stay aware of the latest findings in their domain of interest, let alone to be able to assimilate and mine data from related investigations for purposes of meta-analysis. While computers have the potential for assisting investigators in the extraction, management and analysis of these data, information contained in the traditional journal publication is still largely unstructured, free-text descriptions of study design, experimental application and results interpretation, making it difficult for computers to gain access to the content of what is being conveyed without significant manual intervention. In order to circumvent these roadblocks and make the most of the output from the biomedical research enterprise, a variety of related standards in knowledge representation are being developed, proposed and adopted in the biomedical community. In this chapter, we will explore the current status of efforts to develop minimum information standards for the representation of a biomedical experiment, ontologies composed of shared vocabularies assembled into subsumption hierarchical structures, and extensible relational data models that link the information components together in a machine-readable and human-useable framework for data mining purposes
Automating biomedical data science through tree-based pipeline optimization
Over the past decade, data science and machine learning has grown from a
mysterious art form to a staple tool across a variety of fields in academia,
business, and government. In this paper, we introduce the concept of tree-based
pipeline optimization for automating one of the most tedious parts of machine
learning---pipeline design. We implement a Tree-based Pipeline Optimization
Tool (TPOT) and demonstrate its effectiveness on a series of simulated and
real-world genetic data sets. In particular, we show that TPOT can build
machine learning pipelines that achieve competitive classification accuracy and
discover novel pipeline operators---such as synthetic feature
constructors---that significantly improve classification accuracy on these data
sets. We also highlight the current challenges to pipeline optimization, such
as the tendency to produce pipelines that overfit the data, and suggest future
research paths to overcome these challenges. As such, this work represents an
early step toward fully automating machine learning pipeline design.Comment: 16 pages, 5 figures, to appear in EvoBIO 2016 proceeding
- …
