15 research outputs found

    Multi-Adversarial Variational Autoencoder Networks

    Full text link
    The unsupervised training of GANs and VAEs has enabled them to generate realistic images mimicking real-world distributions and perform image-based unsupervised clustering or semi-supervised classification. Combining the power of these two generative models, we introduce Multi-Adversarial Variational autoEncoder Networks (MAVENs), a novel network architecture that incorporates an ensemble of discriminators in a VAE-GAN network, with simultaneous adversarial learning and variational inference. We apply MAVENs to the generation of synthetic images and propose a new distribution measure to quantify the quality of the generated images. Our experimental results using datasets from the computer vision and medical imaging domains---Street View House Numbers, CIFAR-10, and Chest X-Ray datasets---demonstrate competitive performance against state-of-the-art semi-supervised models both in image generation and classification tasks

    Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware Generative Adversarial Networks

    Full text link
    A Magnetic Resonance Imaging (MRI) exam typically consists of the acquisition of multiple MR pulse sequences, which are required for a reliable diagnosis. Each sequence can be parameterized through multiple acquisition parameters affecting MR image contrast, signal-to-noise ratio, resolution, or scan time. With the rise of generative deep learning models, approaches for the synthesis of MR images are developed to either synthesize additional MR contrasts, generate synthetic data, or augment existing data for AI training. However, current generative approaches for the synthesis of MR images are only trained on images with a specific set of acquisition parameter values, limiting the clinical value of these methods as various sets of acquisition parameter settings are used in clinical practice. Therefore, we trained a generative adversarial network (GAN) to generate synthetic MR knee images conditioned on various acquisition parameters (repetition time, echo time, image orientation). This approach enables us to synthesize MR images with adjustable image contrast. In a visual Turing test, two experts mislabeled 40.5% of real and synthetic MR images, demonstrating that the image quality of the generated synthetic and real MR images is comparable. This work can support radiologists and technologists during the parameterization of MR sequences by previewing the yielded MR contrast, can serve as a valuable tool for radiology training, and can be used for customized data generation to support AI training

    From observing to predicting single-cell structure and function with high-throughput/high-content microscopy

    Get PDF
    Abstract In the past 15 years, cell-based microscopy has evolved its focus from observing cell function to aiming to predict it. In particular—powered by breakthroughs in computer vision, large-scale image analysis and machine learning—high-throughput and high-content microscopy imaging have enabled to uniquely harness single-cell information to systematically discover and annotate genes and regulatory pathways, uncover systems-level interactions and causal links between cellular processes, and begin to clarify and predict causal cellular behaviour and decision making. Here we review these developments, discuss emerging trends in the field, and describe how single-cell ‘omics and single-cell microscopy are imminently in an intersecting trajectory. The marriage of these two fields will make possible an unprecedented understanding of cell and tissue behaviour and function
    corecore