19 research outputs found

    Clique-Finding for Heterogeneity and Multidimensionality in Biomarker Epidemiology Research: The CHAMBER Algorithm

    Get PDF
    Commonly-occurring disease etiology may involve complex combinations of genes and exposures resulting in etiologic heterogeneity. We present a computational algorithm that employs clique-finding for heterogeneity and multidimensionality in biomedical and epidemiological research (the "CHAMBER" algorithm).This algorithm uses graph-building to (1) identify genetic variants that influence disease risk and (2) predict individuals at risk for disease based on inherited genotype. We use a set-covering algorithm to identify optimal cliques and a Boolean function that identifies etiologically heterogeneous groups of individuals. We evaluated this approach using simulated case-control genotype-disease associations involving two- and four-gene patterns. The CHAMBER algorithm correctly identified these simulated etiologies. We also used two population-based case-control studies of breast and endometrial cancer in African American and Caucasian women considering data on genotypes involved in steroid hormone metabolism. We identified novel patterns in both cancer sites that involved genes that sulfate or glucuronidate estrogens or catecholestrogens. These associations were consistent with the hypothesized biological functions of these genes. We also identified cliques representing the joint effect of multiple candidate genes in all groups, suggesting the existence of biologically plausible combinations of hormone metabolism genes in both breast and endometrial cancer in both races.The CHAMBER algorithm may have utility in exploring the multifactorial etiology and etiologic heterogeneity in complex disease

    Microbiota‐Dependent Metabolite Trimethylamine N‐Oxide and Coronary Artery Calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA)

    Get PDF
    BACKGROUND: Clinical studies implicate trimethylamine N-oxide (TMAO; a gut microbiota-dependent nutrient metabolite) in cardiovascular disease risk. There is a lack of population-based data on the role of TMAO in advancing early atherosclerotic disease. We tested the prospective associations between TMAO and coronary artery calcium (CAC) and carotid intima-media thickness (cIMT). METHODS AND RESULTS: Data were from the Coronary Artery Risk Development in Young Adults Study (CARDIA), a biracial cohort of US adults recruited in 1985-1986 (n=5115). We randomly sampled 817 participants (aged 33-55 years) who attended examinations in 2000-2001, 2005-2006, and 2010-2011, at which CAC was measured by computed tomography and cIMT (2005-2006) by ultrasound. TMAO was quantified using liquid chromotography mass spectrometry on plasma collected in 2000-2001. Outcomes were incident CAC, defined as Agatston units=0 in 2000-2001 and >0 over 10-year follow-up, CAC progression (any increase over 10-year follow-up), and continuous cIMT. Over the study period, 25% (n=184) of those free of CAC in 2000-2001 (n=746) developed detectable CAC. In 2000-2001, median (interquartile range) TMAO was 2.6 (1.8-4.2) μmol/L. In multivariable-adjusted models, TMAO was not associated with 10-year CAC incidence (rate ratio=1.03; 95% CI: 0.71-1.52) or CAC progression (0.97; 0.68-1.38) in Poisson regression, or cIMT (beta coefficient: -0.009; -0.03 to 0.01) in linear regression, comparing the fourth to the first quartiles of TMAO. CONCLUSIONS: In this population-based study, TMAO was not associated with measures of atherosclerosis: CAC incidence, CAC progression, or cIMT. These data indicate that TMAO may not contribute significantly to advancing early atherosclerotic disease risk among healthy early-middle-aged adults

    Facing the Challenge of Data Transfer from Animal Models to Humans: the Case of Persistent Organohalogens

    Get PDF
    A well-documented fact for a group of persistent, bioaccumulating organohalogens contaminants, namely polychlorinated biphenyls (PCBs), is that appropriate regulation was delayed, on average, up to 50 years. Some of the delay may be attributed to the fact that the science of toxicology was in its infancy when PCBs were introduced in 1920's. Nevertheless, even following the development of modern toxicology this story repeats itself 45 years later with polybrominated diphenyl ethers (PBDEs) another compound of concern for public health. The question is why? One possible explanation may be the low coherence between experimental studies of toxic effects in animal models and human studies. To explore this further, we reviewed a total of 807 PubMed abstracts and full texts reporting studies of toxic effects of PCB and PBDE in animal models. Our analysis documents that human epidemiological studies of PBDE stand to gain little from animal studies due to the following: 1) the significant delay between the commercialisation of a substance and studies with animal models; 2) experimental exposure levels in animals are several orders of magnitude higher than exposures in the general human population; 3) the limited set of evidence-based endocrine endpoints; 4) the traditional testing sequence (adult animals – neonates – foetuses) postpones investigation of the critical developmental stages; 5) limited number of animal species with human-like toxicokinetics, physiology of development and pregnancy; 6) lack of suitable experimental outcomes for the purpose of epidemiological studies. Our comparison of published PCB and PBDE studies underscore an important shortcoming: history has, unfortunately, repeated itself. Broadening the crosstalk between the various branches of toxicology should therefore accelerate accumulation of data to enable timely and appropriate regulatory action

    Current Insights into Atopic March

    Get PDF
    The incidence of allergic diseases is increasing, and research on their epidemiology, pathophysiology, and the prevention of onset is urgently needed. The onset of allergic disease begins in infancy with atopic dermatitis and food allergy and develops into allergic asthma and allergic rhinitis in childhood; the process is defined as "atopic march ". Atopic march is caused by multiple immunological pathways, including allergen exposure, environmental pollutants, skin barrier dysfunction, type 2 inflammation, and oxidative stress, which promote the progression of atopic march. Using recent evidence, herein, we explain the involvement of allergic inflammatory conditions and oxidative stress in the process of atopic march, its epidemiology, and methods for prevention of onset
    corecore