173,150 research outputs found
Exploiting the noise: improving biomarkers with ensembles of data analysis methodologies.
BackgroundThe advent of personalized medicine requires robust, reproducible biomarkers that indicate which treatment will maximize therapeutic benefit while minimizing side effects and costs. Numerous molecular signatures have been developed over the past decade to fill this need, but their validation and up-take into clinical settings has been poor. Here, we investigate the technical reasons underlying reported failures in biomarker validation for non-small cell lung cancer (NSCLC).MethodsWe evaluated two published prognostic multi-gene biomarkers for NSCLC in an independent 442-patient dataset. We then systematically assessed how technical factors influenced validation success.ResultsBoth biomarkers validated successfully (biomarker #1: hazard ratio (HR) 1.63, 95% confidence interval (CI) 1.21 to 2.19, P = 0.001; biomarker #2: HR 1.42, 95% CI 1.03 to 1.96, P = 0.030). Further, despite being underpowered for stage-specific analyses, both biomarkers successfully stratified stage II patients and biomarker #1 also stratified stage IB patients. We then systematically evaluated reasons for reported validation failures and find they can be directly attributed to technical challenges in data analysis. By examining 24 separate pre-processing techniques we show that minor alterations in pre-processing can change a successful prognostic biomarker (HR 1.85, 95% CI 1.37 to 2.50, P < 0.001) into one indistinguishable from random chance (HR 1.15, 95% CI 0.86 to 1.54, P = 0.348). Finally, we develop a new method, based on ensembles of analysis methodologies, to exploit this technical variability to improve biomarker robustness and to provide an independent confidence metric.ConclusionsBiomarkers comprise a fundamental component of personalized medicine. We first validated two NSCLC prognostic biomarkers in an independent patient cohort. Power analyses demonstrate that even this large, 442-patient cohort is under-powered for stage-specific analyses. We then use these results to discover an unexpected sensitivity of validation to subtle data analysis decisions. Finally, we develop a novel algorithmic approach to exploit this sensitivity to improve biomarker robustness
Validation of a Multivariate Serum Profile for Epithelial Ovarian Cancer Using a Prospective Multi-Site Collection
In previous studies we described the use of a retrospective collection of ovarian cancer and benign disease samples, in combination with a large set of multiplexed immunoassays and a multivariate pattern recognition algorithm, to develop an 11-biomarker classification profile that is predictive for the presence of epithelial ovarian cancer. In this study, customized, Luminex-based multiplexed immunoassay kits were GMP-manufactured and the classification profile was refined from 11 to 8 biomarkers (CA-125, epidermal growth factor receptor, CA 19-9, C-reactive protein, tenascin C, apolipoprotein AI, apolipoprotein CIII, and myoglobin). The customized kits and the 8-biomarker profile were then validated in a double-blinded manner using prospective samples collected from women scheduled for surgery, with a gynecologic oncologist, for suspicion of having ovarian cancer. The performance observed in model development held in validation, demonstrating 81.1% sensitivity (95% CI 72.6 – 87.9%) for invasive epithelial ovarian cancer and 85.4% specificity (95% CI 81.1 – 88.9%) for benign ovarian conditions. The specificity for normal healthy women was 95.6% (95% CI 83.6 – 99.2%). These results have encouraged us to undertake a second validation study arm, currently in progress, to examine the performance of the 8-biomarker profile on the population of women not under the surgical care of a gynecologic oncologist
Cancer biomarker development from basic science to clinical practice
The amount of published literature on biomarkers has exponentially increased
over the last two decades. Cancer biomarkers are molecules that are either part
of tumour cells or secreted by tumour cells. Biomarkers can be used for diagnosing
cancer (tumour versus normal and differentiation of subtypes), prognosticating
patients (progression free survival and overall survival) and predicting
response to therapy. However, very few biomarkers are currently used in clinical
practice compared to the unprecedented discovery rate. Some of the examples
are: carcino-embryonic antigen (CEA) for colon cancer; prostate specific antigen
(PSA) for prostate; and estrogen receptor (ER), progesterone receptor (PR) and
HER2 for breast cancer.
Cancer biomarkers passes through a series of phases before they are used in
clinical practice. First phase in biomarker development is identification of biomarkers
which involve discovery, demonstration and qualification. This is followed
by validation phase, which includes verification, prioritisation and initial
validation. More large-scale and outcome-oriented validation studies expedite
the clinical translation of biomarkers by providing a strong ‘evidence base’. The
final phase in biomarker development is the routine clinical use of biomarker.
In summary, careful identification of biomarkers and then validation in well-designed
retrospective and prospective studies is a systematic strategy for developing
clinically useful biomarkers
Disease Knowledge Transfer across Neurodegenerative Diseases
We introduce Disease Knowledge Transfer (DKT), a novel technique for
transferring biomarker information between related neurodegenerative diseases.
DKT infers robust multimodal biomarker trajectories in rare neurodegenerative
diseases even when only limited, unimodal data is available, by transferring
information from larger multimodal datasets from common neurodegenerative
diseases. DKT is a joint-disease generative model of biomarker progressions,
which exploits biomarker relationships that are shared across diseases. Our
proposed method allows, for the first time, the estimation of plausible,
multimodal biomarker trajectories in Posterior Cortical Atrophy (PCA), a rare
neurodegenerative disease where only unimodal MRI data is available. For this
we train DKT on a combined dataset containing subjects with two distinct
diseases and sizes of data available: 1) a larger, multimodal typical AD (tAD)
dataset from the TADPOLE Challenge, and 2) a smaller unimodal Posterior
Cortical Atrophy (PCA) dataset from the Dementia Research Centre (DRC), for
which only a limited number of Magnetic Resonance Imaging (MRI) scans are
available. Although validation is challenging due to lack of data in PCA, we
validate DKT on synthetic data and two patient datasets (TADPOLE and PCA
cohorts), showing it can estimate the ground truth parameters in the simulation
and predict unseen biomarkers on the two patient datasets. While we
demonstrated DKT on Alzheimer's variants, we note DKT is generalisable to other
forms of related neurodegenerative diseases. Source code for DKT is available
online: https://github.com/mrazvan22/dkt.Comment: accepted at MICCAI 2019, 13 pages, 5 figures, 2 table
Biomarkers in solid organ transplantation: establishing personalized transplantation medicine.
Technological advances in molecular and in silico research have enabled significant progress towards personalized transplantation medicine. It is now possible to conduct comprehensive biomarker development studies of transplant organ pathologies, correlating genomic, transcriptomic and proteomic information from donor and recipient with clinical and histological phenotypes. Translation of these advances to the clinical setting will allow assessment of an individual patient's risk of allograft damage or accommodation. Transplantation biomarkers are needed for active monitoring of immunosuppression, to reduce patient morbidity, and to improve long-term allograft function and life expectancy. Here, we highlight recent pre- and post-transplantation biomarkers of acute and chronic allograft damage or adaptation, focusing on peripheral blood-based methodologies for non-invasive application. We then critically discuss current findings with respect to their future application in routine clinical transplantation medicine. Complement-system-associated SNPs present potential biomarkers that may be used to indicate the baseline risk for allograft damage prior to transplantation. The detection of antibodies against novel, non-HLA, MICA antigens, and the expression of cytokine genes and proteins and cytotoxicity-related genes have been correlated with allograft damage and are potential post-transplantation biomarkers indicating allograft damage at the molecular level, although these do not have clinical relevance yet. Several multi-gene expression-based biomarker panels have been identified that accurately predicted graft accommodation in liver transplant recipients and may be developed into a predictive biomarker assay
How shall we use the proteomics toolbox for biomarker discovery?
Biomarker discovery for clinical purposes is one of the major areas in which
proteomics is used. However, despite considerable effort, the successes have
been relatively scarce. In this perspective paper, we try to highlight and
analyze the main causes for this limited success, and to suggest alternate
strategies, which will avoid them, without eluding the foreseeable weak points
of these strategies. Two major strategies are analyzed, namely, the switch from
body fluids to cell and tissues for the initial biomarker discovery step or, if
body fluids must be analyzed, the implementation of highly selective protein
selection strategies
Addressing the needs of traumatic brain injury with clinical proteomics.
BackgroundNeurotrauma or injuries to the central nervous system (CNS) are a serious public health problem worldwide. Approximately 75% of all traumatic brain injuries (TBIs) are concussions or other mild TBI (mTBI) forms. Evaluation of concussion injury today is limited to an assessment of behavioral symptoms, often with delay and subject to motivation. Hence, there is an urgent need for an accurate chemical measure in biofluids to serve as a diagnostic tool for invisible brain wounds, to monitor severe patient trajectories, and to predict survival chances. Although a number of neurotrauma marker candidates have been reported, the broad spectrum of TBI limits the significance of small cohort studies. Specificity and sensitivity issues compound the development of a conclusive diagnostic assay, especially for concussion patients. Thus, the neurotrauma field currently has no diagnostic biofluid test in clinical use.ContentWe discuss the challenges of discovering new and validating identified neurotrauma marker candidates using proteomics-based strategies, including targeting, selection strategies and the application of mass spectrometry (MS) technologies and their potential impact to the neurotrauma field.SummaryMany studies use TBI marker candidates based on literature reports, yet progress in genomics and proteomics have started to provide neurotrauma protein profiles. Choosing meaningful marker candidates from such 'long lists' is still pending, as only few can be taken through the process of preclinical verification and large scale translational validation. Quantitative mass spectrometry targeting specific molecules rather than random sampling of the whole proteome, e.g., multiple reaction monitoring (MRM), offers an efficient and effective means to multiplex the measurement of several candidates in patient samples, thereby omitting the need for antibodies prior to clinical assay design. Sample preparation challenges specific to TBI are addressed. A tailored selection strategy combined with a multiplex screening approach is helping to arrive at diagnostically suitable candidates for clinical assay development. A surrogate marker test will be instrumental for critical decisions of TBI patient care and protection of concussion victims from repeated exposures that could result in lasting neurological deficits
Differential Proteomic Analysis of Human Saliva using Tandem Mass Tags Quantification for Gastric Cancer Detection.
Novel biomarkers and non-invasive diagnostic methods are urgently needed for the screening of gastric cancer to reduce its high mortality. We employed quantitative proteomics approach to develop discriminatory biomarker signatures from human saliva for the detection of gastric cancer. Salivary proteins were analyzed and compared between gastric cancer patients and matched control subjects by using tandem mass tags (TMT) technology. More than 500 proteins were identified with quantification, and 48 of them showed significant difference expression (p < 0.05) between normal controls and gastric cancer patients, including 7 up-regulated proteins and 41 down-regulated proteins. Five proteins were selected for initial verification by ELISA and three were successfully verified, namely cystatin B (CSTB), triosephosphate isomerase (TPI1), and deleted in malignant brain tumors 1 protein (DMBT1). All three proteins could differentiate gastric cancer patients from normal control subjects, dramatically (p < 0.05). The combination of these three biomarkers could reach 85% sensitivity and 80% specificity for the detection of gastric cancer with accuracy of 0.93. This study provides the proof of concept of salivary biomarkers for the non-invasive detection of gastric cancer. It is highly encouraging to turn these biomarkers into an applicable clinical test after large scale validation
- …
